J BERGES

Parameter Description

Version A20.00 Part 2

Table of Contents (Operating Instructions [Part 1])

		Pa	ge
1	Gene	eral Information	
	1.1	Explanation of Symbols and Notes	
	1.2	Safety and Operating Instructions for Drive Converters	
	1.3	Preface	
	1.4	Description of Functions	
	1.5 1.6	Inverter Control	
2	-	allation	
-	2.1	Inspection of Unit after Delivery.	
	2.2	General Installation Instructions	
	2.3	EMC (Electromagnetic Compatibility)	
		2.3.1 Limit Classes	11
		2.3.2 Filter Components	
		2.3.3 Interference Suppression Measures	
		2.3.4 EMC Ordinance (EMC Directive, 89/336 EEC).	
	2.4	Wiring Practices.	
		2.4.1 Applicable Codes 2.4.2 Power Wiring	
		2.4.2 Power Wiring. 2.4.3 Control Lines/Interface	
	2.5	Line Power Connection	
	2.0	2.5.1 Use of Fault Current Safety Switches	
		2.5.2 Line Conditions	
		2.5.3 Line Fusing	
		2.5.4 Using Line Filters	
		2.5.5 Start-Up on the Line	
		2.5.6 Reducing Current Surges and Voltage Transients	
	2.6	Motor Connection	
	2.7	Brake Resistor	
	2.8	Functions and Use of the Terminals 2.8.1 Tightening torques of the connection terminals	
		2.8.2 Power Terminals	
		2.8.3 Control Terminals	
	2.9	Typical Control Terminal Assignments	
3		nnical Data	
	3.1	Output Data	
	3.2	Input Data	33
	3.3	Control Data	
	3.4	Protective Function	
	3.5	Brake Chopper Power Dissipation.	
	3.6	Display and Operating Unit	
	3.7 3.8	Parameter Groups	
	3.0 3.9	Dimensions	
4		e Variants	
•	4.1	The Motor Drive Data and How it is Measured	
	4.2	The Asynchronous Motor and Speed Control	
		4.2.1 V/f-Controlled Operation	
		4.2.2 Field-Orientated-Controlled Mode (Vector Control)	45
		4.2.3 SLV (Sensorless Vector Control)	
	4.3	The EC Drive	
5		ex	
	5.1	Abbreviations Used	
	5.2	Parameter Structure	
	5.3 5.4	Parameter Overview	-
	5.4	5.4.1 Normal Handling of Error States	
		5.4.2 Handling of Error States with the "Acknowledge Error State" Function	
			51

04.08.05	Parameter Description	2 1
07_GB_T2	UD 7000 — 1.5–355.0	2-1

Table of Contents (Parameter Description [Part 2])

		Pag	je
6	Com	missioning	3
(6.1	Prior to Switch-On	3
(6.2	What Happens on Switch-On	
	6.3	Further Steps	
	6.4	Assignment of the Control Terminals	
	6.5 6.6	Parameter List/Help	
,	0.0	6.6.1 Preparation	
		6.6.2 Parameterisation	
		6.6.3 Precision Adjustment.	
		6.6.4 Solution to the Problem	9
(6.7	Commissioning of a Field-Orientated-Controlled Asynchronous Motor (FO) or of a Permanent-Field Synchronous Drive (EC)	
		6.7.1 Hardware Precondition (Option Card and Wiring).	
		6.7.2 Parameterisation of the Speed Controller on Systems with Feedback (FO and EC Applications)	
		6.7.3 Controller Optimization	
	6.8	6.7.4 Solution to the Problem 1 Commissioning an SLV Application 1	
	0.0	6.8.1 Introduction	
		6.8.2 Commissioning Application 50 (SLV Rotational Speed Control)	
(6.9	Note on Commissioning further to Application 51	
		6.9.1 Signal Flow Diagrams	
(6.10	Stepper Control	25
	-	and Displays/Indicators	
	7.1	Display and Operating Unit (ABE)	
	7.2	Display in the Operating Mode	
		7.2.1 Standard Display 1 2 7.2.2 Standard Display 2 2	
		7.2.3 Display in the Program Mode	
		7.2.4 Operating Examples	
-	7.3	On-Line Help	
-	7.4	Key Functions	33
		7.4.1 Control Keys	
		7.4.2 Control and Parameter Keys – Single Operation.	
		7.4.3 Control and Parameter Keys – Combinations with SHIFT	
8	Dara	7.4.4 LED Status Display	
	Fara 8.1	Group 1 – Motor Data	
	8.2	Group 2 – Basic Data	
	8.3	Group 3 – Setpoint Selection	
8	8.4	Group 4 – Frequencies.	
8	8.5	Group 5 – Torque	70
	8.6	Group 6 – V/Hz Characteristic	
	8.7	Group 7 – Inverter Functions	
	8.8	Group 8 – Protective Functions	
	8.9 8 10	Group 9 – Binary Inputs/Outputs	
		Group B – Speed Controller	
		Group C – Stepper Control	
		Group D – Options	
8	8.14	Group E – Service Data II	12
		Group F – Service Data III	
		Group 0 – Service Data I	
8	8.17	Error States	
		8.17.1 Normal Handling of Error States 12 8.17.2 Handling of Error States with the "Acknowledge Error State" Function 12	
9	۵nne	8.17.2 Handling of Error States with the "Acknowledge Error State" Function	
-	9.1	Abbreviations Used	
	9.2	Hexadecimal to Binary Conversion	
	9.3	Parameter Structure	
9	9.4	Parameter Overview	26

2-2	Parameter Description	04.08.05
2-2	UD 7000 — 1.5–355.0	07_GB_T2

6 Commissioning

ATTENTION!

6.1 Prior to Switch-On

6.1.1 Entering Parameters

Familiarise yourself with the functions of the display and operator-control unit ABE (also referred to as keyboard and display below). Section 7.2.4, "Operating Examples", explains, by way of examples, how a parameter is edited. Please note the information on the various keys and keyboard short-cuts in Tables 7.3, 7.4 and 7.5, so as to fully exhaust all capabilities of parameter assignment.

Normally, entry of a new parameter value is processed by the inverter directly after it is confirmed with ENTER and takes effect at the latest when message "Stored" disappears again. Parameters necessitating a restart are exceptions. This description contains a corresponding note in conjunction with these parameters.

6.1.2 Selection Parameters

Always ensure that only the selection options documented in the Manual are set.

Undocumented selection values may lead to unexpected and/or dangerous states (background: the UD 7000 features a wide variety of special applications with solutions for special problems in the field of drive engineering. Selection options are reserved for these applications). Our Sales Division will be more than willing to inform you of the currently available applications and can make available to you the corresponding application descriptions on request.

In the case of the so-called "selection parameters", it is also possible to enter values which are not documented. Please note the following points so as to avoid danger to operating staff and the system itself:

- 1. After entering a parameter, check whether the selected value is correct and has been accepted.
- 2. If the entered value does not match the current operating state of the inverter (since, for instance, it is illegal for the active application), the UD 7000 may automatically change the value to the factory default setting, the value zero or the value active previously. These settings must then be checked:
 - What application is active?
 - LOCAL or REMOTE mode?
 - Have the output stages been enabled?
 - Is an error or fault pending?

6.1.3 Parameter Sets

The UD 7000 features three equivalent parameter sets. Entered parameters and the results of measurements in the test mode are always only ever stored in the active parameter set (parameter **E9 – Customer parameter set**). Set 1 is active by default.

The active parameter set can be changed over either with the parameter **E9** – **Customer parameter set** or with the aid of **binary inputs**. To this end, one of the binary inputs R/J, PS1–PS3 must be programmed to the corresponding function (see parameters 98–9B). Parameter sets can only be changed over in the stop state.

As one parameter set will be adequate for the majority of applications, it is possible to use the second or third one to back up the optimized settings. For further information, refer to the description of the parameters **E9 – Customer parameter set** and **EA – Application-dependent defaults** in Section 8.14 of this parameter description.

04.08.05	Parameter Description	ົ່ງ
07_GB_T2	UD 7000 — 1.5–355.0	2-3

The parameter sets may contain diverse applications (parameter 2C). If, in the event of a parameter set change-over, the unit detects that the new set contains a different application, the inverter is restarted directly after the set change-over in order to adapt the inverter environment.

ATTENTION!

If the change in the parameter set also results in a change in the motor data, the application number or other important motor quantities (stator and rotor resistance or controller parameters etc.), this may lead to a situation in which the inverter loses control of the motor. This is why a safety function is integrated (parameter 8B) which deactivates the inverter output stages in any case after a stop command once a certain time has elapsed.

Display of the active parameter set

In the "stop state", the active parameter set is shown in the standard display 1:

REM	Stop	Set: 2
Set 23.45 Hz		0%

When the parameters are displayed, the active parameter set is recognizable by the character between the parameter number and the value.

PARAMETER SET	CHARACTER
1	:
2	=
3	#

EXAMPLE:

in customer parameter set 1	in set 2	in set 3
Maximum frequency	Maximum frequency	Maximum frequency
PROG 23: 100 0 Hz	PROG 23= 100 0 Hz	PROG 23# 100 0 Hz

The active parameter set is also correspondingly recognizable in standard display 2 (example with parameter set 2 active):

VIEW D5=	88.5 %	
VIEW 9=	45.6 Hz	

6.1.4 Hexadecimal and Binary Notation

Most parameters are displayed as decimal numbers. The value range indicates whether places after the decimal point and signs are used. In the case of certain parameters, entry and status displays are implemented with the aid of bit-serial (binary) assignment. Functions can be activated and deactivated by setting (value 1) or resetting (value 0) individual bits. Since the number of places on the display does not suffice, binary numbers are entered and displayed as hexadecimal numbers. Groups of four bits in each case are combined to form one hexadecimal number, e.g. bit pattern 0101 corresponds to value 5_{hex} . Leading zeros are displays and the word "hex" is displayed after each hexadecimal parameter. The table on Page 2-124 will assist to you to convert the binary numbers to hexadecimal numbers.

2-4	Parameter Description	04.08.05
2-4	UD 7000 — 1.5–355.0	07_GB_T2

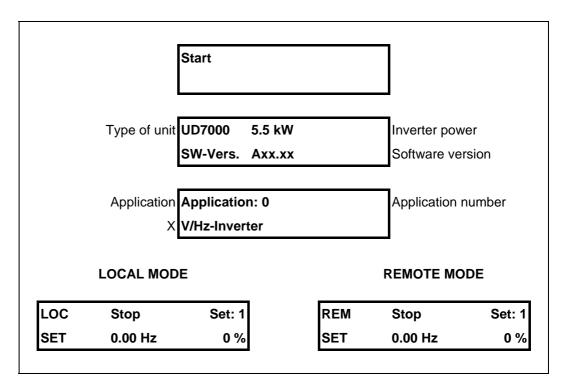
6.1.5 Error Messages

If the PROG, SHIFT or ENTER key is pressed, the message is reset on the ABE (display and operator-control unit). Acknowledgement of the error message does not cancel the cause of the error. Errors may be also still be pending after reset (see also Chapter 8.17, "Error States").

6.2 What Happens on Switch-On

- Observe the general safety notes in the UD 7000 Operating Instructions (07_GB_T1) before commissioning the inverter.
- Please read through Chapter 4, "Drive Variants" in order to better understand the UD 7000 inverter technology.
- If you should not yet be acquainted with how to operate the inverter, you will find the menu structure and the key functions of the keypad on Pages 2-125 and 2-33 up to 2-38.
- Check that the inverter's supply voltage (nameplate) and line voltage agrees.
- Check the installation of the converter, referring to the notes given in Chapter 2.
- Connect the line voltage (as a test, the device-internal fans switch on briefly when the line voltage is connected (the inverter up to 22 kW). The fans are then controlled temperature-dependently). As of a nominal inverter output of 30 kW, the device-internal fans run continuously.

The inverter checks the output stage size during the initialisation phase and defines the default values of diverse parameters that are dependent on it. The display then successively shows the following:


- 1. "Start" (for a short time).
- 2. Type of unit, inverter power and software version.
- Application. The application numbers that can be selected are described under parameter 2C Application. X stands for:

V/Hz-Inverter / EC-speed ctrl. / EC-torque ctrl. / EC-El. Gearbox / FO-speed ctrl. / FOtorque ctrl. / FO-El. Gearbox / RL-speed ctrl. / RL-torque ctrl. / RL-El. Gearbox / SLVspeed ctrl. / SLV-sp. ctrl. II / SLV-torq.ctrl

The default setting for the application (X) and the application number is "V/Hz-Inverter", "0".

The inverter is then in the operation mode and shows the default display 1 or 2 (see Chapters 7.2.1 and 7.2.2).

04.08.05	Parameter Description	2 5
07_GB_T2	UD 7000 — 1.5–355.0	2-0

HINT!

The parameters in "Group 1 – Motor data" must be adapted to the local situation prior to commissioning the drive so as to ensure optimum motor/unit coordination.

6.3 Further Steps

According to the works settings, the inverter can be controlled by keyboard (LOC) or via the terminal inputs (REM). You can switch over between both control sources via the input PS3. The frequency setpoint (SET) and the inverter load in % are displayed in the bottom display line.

To adapt to the signal source used locally, parameters are available for the individual inputs (outputs). You will find the parameter allocations of the typical control terminal assignments on Page 1-31.

Adapt, i.e. which control source, e.g. speed setpoint or left/right starting, is to be used depending on the selected operating mode, by means of parameter 31.

6.4 Assignment of the Control Terminals

Page 1-31 shows a typical connection configuration of the inverter control terminals. The description of function of the functions available at the relevant inputs/outputs corresponds to the various setting options of the inverter. The function of the relevant I/Os can, of course, be adapted to the application using parameters scheduled for this. A reference in parentheses to the parameter responsible for the relevant I/O is provided in order to make it easier to locate the parameters. The inverter interface is shown in brief at the left-hand side of the terminals in order to provide the operator with an insight into the input wiring. The inverter's binary inputs are set to HIGH-active when the inverter is delivered (in the case of European factory default settings) (see also Parameter 9F).

26	Parameter Description	04.08.05
2-6	UD 7000 — 1.5–355.0	07_GB_T2

6.5 Parameter List/Help

Pages 2-126...2-130 list the parameters accessible to the customer. This list contains space for entry of the customer-specific settings besides the factory default parameter values. In order to achieve a satisfactory drive result, it will be necessary to adapt a number of parameters to the application (see Chapter 6.6 (Commissioning Application 0 – Inverter), 6.7 (Commissioning of a Field-Orientated-Controlled Asynchronous Motor (FO) or of a Permanent-Field Synchronous Drive (EC)) or 6.8 (Commissioning an SLV Application)). Please refer to the Parameter Description (Chapter 8) for a precise description of the parameters.

The recommended step-by-step procedure for commissioning an SL, FO, <u>SLV</u>^{\odot} or EC drive ⁽¹⁾ is listed in the following chapters. Adaptation of the I/Os is not discussed here. The steps described in short form merely serve to adapt the inverter to the motor. These settings should be made with extreme caution because an optionally functioning drive will only be guaranteed if the inverter is harmonised correctly to the motor.

6.6 Commissioning Application 0 – Inverter

6.6.1 Preparation

- Ensure that the software version in the unit corresponds to the Operating Instructions and the Parameter Description. During the initialisation phase, you will see the software version (e.g. A19.xx) in the second line on the display.
- The currently activated application is displayed briefly after power-on of the inverter during the initialisation phase. If any other applications than "0 Inverter" has been selected in the unit, you can change this with parameter 2C Application.
- In order to ensure that all parameters in the inverter correspond to the factory default setting, you can reset all three or only one of the customer parameter sets to the factory default setting with the aid of parameter EA Application-dependent defaults. Please note that this Reset only takes effect the next time the software is restarted. In order to do this, either briefly disconnect the unit from the line supply (until the text on the display disappears) or use parameter 2D Software reset.

6.6.2 Parameterisation

After you have opted for your preferred display language (parameter 78), you can then start parameterising the inverter:

• The motor data must always be entered first in parameter group 1.

In order to do this, simply transfer the information from the rating plate of the connected motor to the corresponding parameters of group 1. This is the most important step for parameterisation of the inverter! This is the only way of ensuring that the drive functions correctly. The protection functions integrated in the inverter (e.g. current and rotational-speed monitoring) operate reliably only if the inverter is familiar with the correct motor data.

The Autotuning functions (i.e. the commissioning aids, see parameter **2A** – **Test mode**) also require entry of the correct data.

⁽¹⁾ Abbreviations used:

SL
 Sensorless and V/f-controlled mode.

 EC
 Operation with electronically commutated synchronous motor.

FO Asynchronous motor in field-orientated control.

SLV Asynchronous motor in sensorless vector control (without feedback).

- The next step is to check whether the parameter values in "Group 2 Basic data" are correct for your application. Frequently, the acceleration and deceleration times or the maximum frequency needs to be adapted. It is also important that you check whether the settings of parameters 29 Control mode and 31 Setpoint selection (frequency setpoint) meet your requirements.
- Parameter 29 Control mode defines the sources for the Start/Stop signal and the setpoint for the two operating modes LOCAL (the inverter is controlled via the operator-control unit) and REMOTE (operation via the control terminals).
- If you opt for operating mode REMOTE, you must then, as the next step, inform the inverter of what signal source you wish to use for the frequency setpoint via parameter 31

 Setpoint selection (frequency setpoint) and define, using parameters 71 Start and Stop options and 91 Function of inputs FWD and REV, how the binary inputs are to act.
- The parameters of "Group 6 V/Hz characteristic" define how the voltage/frequency assignment is implemented in the inverter. In many cases, it is not necessary to adapt the parameters. However, if the drive is to be operated with customer-selected assignment of output voltage to output frequency, this can be done by entering the value 2 in parameter 62 V/Hz characteristic selection. In this case, further steps are required, and these are specified in the description under parameter 6A V/Hz characteristic, voltage V3.
- For all other cases, the inverter generates the V/f ratio on the basis of a "Sensorless Vector Motor Model" automatically. When doing this, it allows, amongst other things, for the resistance losses at output frequency f = 0 Hz and, with the aid of the Autoboost function (see parameter 61), adapts the motor's excitation to the load conditions.
- Entry of the correct motor data (group 1) and conducting Test mode are the preconditions for a functioning motor model in the inverter. Test mode 104 (parameter 2A) is recommended, but, at least, the stator resistance (Test 101) should be measured. This test run needs to be conducted successfully only once, i.e. no error message may be displayed during the test run. This completes the basic configuration of the inverter.

6.6.3 Precision Adjustment

The wide variety of other parameters also available for application "0 - Inverter" makes it possible to also adapt the UD 7000 to more complex drive configurations. To put it in brief, the following setting options are important:

- Adaptation of the torque limits in group 5 (factory default setting: 150% of the nominal motor torque in all four quadrants).
- Correction of the motor excitation via parameter **22 Boost**.
- Adaptation of the ramps (e.g. use of S-shaped ramps) via parameters 72 and 73.
- Adaptation of the drive to the field attenuation via parameter **21 Knee frequency** and parameter **62 V/Hz characteristic selection**.
- Configuration of the DC brake with parameters 63–65.
- Increase in rotational-speed stability with the aid of parameter 76 Slip compensation.
- You can enhance the smooth-running characteristics at output frequencies less than approx. 5 Hz by activating PWM frequency correction (see parameter FB).
- Please consult Chapter 8.9, "Group 9 Binary Inputs/Outputs" for the diverse functions of the binary inputs and outputs.

2-8	Parameter Description	04.08.05
2-0	UD 7000 — 1.5–355.0	07_GB_T2

- Please note that application "0 Inverter" is suitable only for "standard tasks". This is why a wide variety of other applications is available, and commissioning for these is described separately. In some cases, additional functions can also be activated easily for application 0 (function "Motor potentiometer", Step-by-step control, alarm functions of the binary outputs, Output of internal variables via the analogue outputs etc.).
- The option of parameterising and controlling the inverter via the serial RS 485 port is application-independent.

6.6.4 Solution to the Problem

As soon as all parameters have been entered, several parameters providing information on the current inverter status are available. In parameter group "0 – Service data I", you can, for instance, display the actual values of the currents, voltages, frequencies and the inverter temperature. This allows you, for instance, to check the magnitude of the line input voltage, whether the DC link voltage ($V_{DC link} = \sqrt{2} \times V_{Line}$) is correct, whether the inverter is overheating or the magnitude of the no-load current. These parameters which are used simply for display purposes can be found in the parameter list on Pages 2-126...2-130. They are identified with r-o (read-only) in column Factory default setting.

The data of the motor model used and the current inverter-specific states are displayed in parameter groups "E – Service data II" and "F – Service data III" and some of them can also be adapted manually.

Frequently, it is not visible immediately whether the cause of the fault or error relates to the cabling of the installation, parameterisation of the inverter, incorrect rating or even defect components.

- 1. Check the motor cabling.
- 2. Check the motor data in parameter group 1.
- 3. Check the cabling of the control terminals.
- 4. Is the inverter in the required control mode (LOC or REM)?
- 5. How does the inverter respond to the setpoint inputs (**NOTE:** the applied setpoint is shown on the display)?
- 6. Is an error being displayed?
- 7. Has Test mode (parameter 2A) been conducted correctly and in line with the application (parameter 2C)?

6.7 Commissioning of a Field-Orientated-Controlled Asynchronous Motor (FO) or of a Permanent-Field Synchronous Drive (EC)

6.7.1 Hardware Precondition (Option Card and Wiring)

- Ensure that the software version in the unit corresponds to the Operating Instructions and the Parameter Description. The software version (e.g. A19.xx) is shown on the display during the initialisation phase in the second line.
- The application activated in each case after power-up and its application number (see description of parameter 2C – Application) are also shown during the initialisation phase.

04.08.05	Parameter Description	2 0
07_GB_T2	UD 7000 — 1.5–355.0	2-9

HINT!

- An EC or FO version ⁽¹⁾ requires tachogenerator feedback (synchro-generator). The unit must be extended with an option card for connection of the feedback signal. A card for a resolver connection or encoder connection is available. If the option card required for the selected application is not yet fitted in the unit, you will see message "Error 11 Option". Proceed as follows in order to install an option card:
- 1. Disconnect the unit from the line. Also ensure that there is no DC infeed (e.g. by a DC link coupling). Hazardous voltages are still present if lamp "BUS CHG" is still lit (up to 55 kW in the case of inverters).
- 2. Remove the upper and lower parts of the black plastic cover.
- 3. Place the inverter with right-hand side pointing upwards in front of you on the bench.
- Open the right-hand side by undoing the cross-recessed-head screw at the top and bottom of the right-hand side cover. The cover can now be removed.
 CAUTION: the operator-control unit will now be hanging loosely from the ribbon cable which connects it to the control board.
- 5. The connection for the option card (50-pin socket connector) is located at the bottom right-hand edge of the control board. Hexagon symbols in Figure 6.1 indicate at what point the card must be installed.
- 6. Before you slide the optional card in, push on the two plastic spacers on the underside of the optional card.

Different spacers and screws must be used depending on the size of the inverter (see the table below):

Inverter size	Nylon spacers	Screws
BG II	4.8 mm	2.5 imes10 mm
BG III	4.8 mm	2.5 imes10 mm
BG IV	9.5 mm	2.5 imes16 mm
BG V	12.5 mm	2.5 imes 20 mm
BG VI	12.5 mm	2.5 imes 20 mm
BG VII	15.9 mm	2.5 imes25 mm
BG VIII	15.9 mm	2.5 imes 25 mm
BG IX	15.9 mm	2.5 imes 25 mm

(1) Abbreviations used:

- SL Sensorless and V/f-controlled mode. EC Operation with electronically commutate
- EC Operation with electronically commutated synchronous motor. FO Asynchronous motor in field-orientated control.
- FO Asynchronous motor in field-orientated control. SLV Asynchronous motor in sensorless vector control

Parameter Description UD 7000 — 1.5–355.0

Asynchronous motor in sensorless vector control (without feedback).

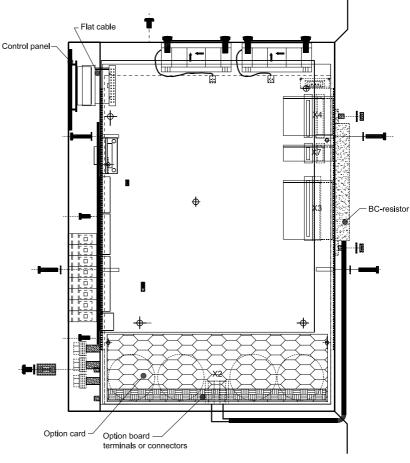
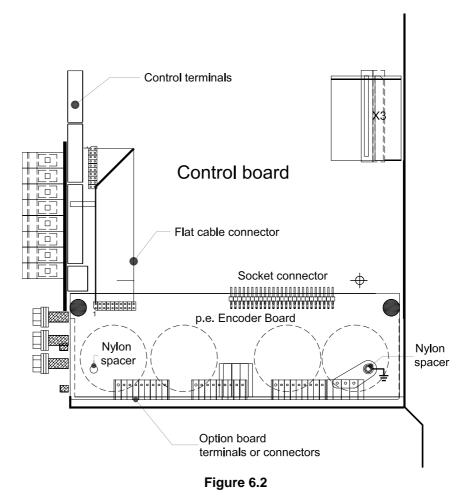



Figure 6.1

- 7. Plug the option card into the socket connector of the control board and screw the card to the shielding plate with two M2.5 screws. Ensure that the card is not inserted twisted into the connection socket for the optional card.
- 8. Using the supplied ribbon cable, make an additional connection between the pin connectors of the control board and the option card (see "Ribbon cable connection" in Figure 6.2). The side of the ribbon cable marked in colour must be plugged onto the PIN marked "1".
- 9. Break out the required terminal or connector openings on the right-hand device cover so as to provide access to the connections if the cover is closed off.
- 10. Firmly screw the cover back onto the unit.
- 11. Connect the encoder or resolver. Please refer to the descriptions of the synchro-generator and the option cards for further details.
- 12. Reconnect the unit to the line power supply.

04.08.05	Parameter Description	2-11
07_GB_T2	UD 7000 — 1.5–355.0	2-11

6.7.2 Parameterisation of the Speed Controller on Systems with Feedback (FO and EC Applications)

- 1. Configure parameter **2C Application** for the required application (either one of the EC applications 10, 11, 12 or one of the FO applications 20, 21, 22).
- 2. Switch off the line power supply, wait until the display disappears and switch back on or set parameter 2D to 1. This restarts the software for application-specific parameters (e.g. the parameters in group B) which are only now displayed.
- 3. Enter the motor data in parameter group 1. Always enter the correct motor data so that the UD 7000 can compute the correct control limits and model variables.

NOTE: the UD 7000 uses the power factor of the motor as the key value for motor control. If the power factor is not specified on the motor's rating plate, please determine a suitable value using the information specified for parameter **13 – Power factor**.

- 4. Next, you should check whether the parameter values in "Group 2 Basic data" are correct for your application. Frequently, for instance, it is necessary to adapt the acceleration and ramp down times or the maximum frequency. It is also important that you check whether the settings of parameter 29 Control mode and 31 Setpoint selection (frequency setpoint) meet your requirements.
- 5. Parameter **29 Control mode** defines the sources for the Start/Stop signal and the setpoint for the two operating modes LOCAL (the inverter is controlled via the operator-control unit) and REMOTE (operation via the control terminals).

2-12	Parameter Description	04.08.05
2-12	UD 7000 — 1.5–355.0	07_GB_T2

- If you opt for operating mode REMOTE, you must then, as the next step, inform the inverter of what signal source you wish to use for the frequency setpoint via parameter 31 Setpoint selection (frequency setpoint) and define how the binary inputs are to act with parameter 71 Start and Stop options and 91 Function of inputs FWD and REV.
- 7. Enter the specific data of the synchro-generator used. This will either be the number of lines of the encoder used in parameter BE or its number of pole pairs in parameter BA if a resolver is connected.
- Select the Test mode 109 in parameter 2A. After the first Start command after poweron, the stator resistance, the leakage reactance X_σ and the direction of rotation of the position encoder are determined during a test run. On the basis of this, the inverter computes further model variables and controller parameters. After the test has been successfully conducted, parameter 2A – Test mode is automatically set to value 0, i.e. no further tests are conducted at a later point.

HINT!

If the motor shaft is not free to move for the test run, conduct test 104 instead of test 109. Please refer to parameter **BD** – **Angle sensor direction of rotation** for further information.

9. Set the rotational speed setpoint to 0 Hz (or the torque setpoint 0% for closed-loop torque control).

ATTENTION!

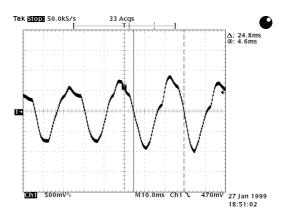
If the setpoint is not set to ZERO, the inverter will respond to the set setpoint after the test run, i.e. the motor will start to turn and, under certain circumstances, under full torque.

10. The test run commences with the first Start command. Conducting the tests with no errors is the precondition for trouble-free operation and is the basis for the optimization steps which follow.

NOTE: if an error occurs during the test, switch off the line power supply, switch it back on again and repeat the test. If there is still an error message, please always follow the information in Section 6.7.4, "Solution to the Problem".

6.7.3 Controller Optimization

If you have successfully completed configuration of the basic setting, the UD 7000 is configured with a moderate response time. If you require higher performance, the speed controller must be optimized by adapting parameters B1 and B2 accordingly. The following procedure will help you to establish the best settings:


 Note down the values of the current controller parameters F8 – Current controller gain and F9 – Specific current controller reset time, as determined automatically by the test run 109 (or 104).

 $\begin{array}{ll} \mathsf{F8}_{\text{(self-regulated)}} = _____ & (\text{in the example, } \mathsf{F8} = 15.61 \ \Omega) \\ \mathsf{F9} & = _____ & (\mathsf{F9} = 10) \end{array}$

- 2. Set parameter F8 to 1.
- 3. Set parameter A7 to 2. This sets the low-pass filter time for the measurement terminal.
- Now start to optimise the velocity control loop: Set parameter B2 – Reset time of speed controller to the maximum value which it is possible to set. Set parameter B1 – Speed controller gain to (a lower value, i.e.) 20 or below.
- Set parameter A1 Analog output MET1 selection to 19. The torque-generating current is output signed at analogue output MET1. Connect an oscilloscope to terminals COM and MET1 and set a resolution of 500 mV/division.
- 6. Set a setpoint of approx. 50% of the nominal motor frequency. Start the motor.

04.08.05	Parameter Description	2-13
07_GB_T2	UD 7000 — 1.5–355.0	2-13

 Increase the setting of parameter B1 – Speed controller gain step-by-step until the motor starts to oscillate. See the illustration below.

 Note down the period T (in this case 25 ms) of the oscillation and the value of parameter B1 at the instant at which the proportional gain k entered the critical band.
 EXAMPLE:

T = 25 ms

k = 1700

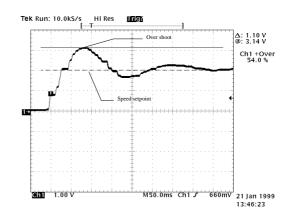
9. Calculate the correct value for B1 and enter this value:

$$B1 = \frac{(k \times 0.45)}{F8_{(self-regulated)}} = \frac{1700 \times 0.45}{15.61} = 49$$

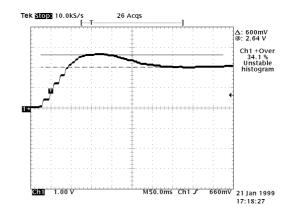
10. Calculate the correct integral-action time:

 $B2 = 0.85 \times T = 0.85 \times 25 \text{ ms} = 21 \text{ ms}.$ Enter this value in parameter B2.

- 11. Set parameter **F8 Current controller gain** to the value which you noted down in step 1 (e.g. 15.61 Ω).
- Set parameter A1 Analog output MET1 selection to 0. Move on to parameter 09 and press SHIFT + ENTER (parameter 09 – Actual frequency is shown on the standard display 2). These two steps transfer the actual motor velocity to output MET1.
- 13. Standardise the output at MET1 output to twice the nominal motor frequency.

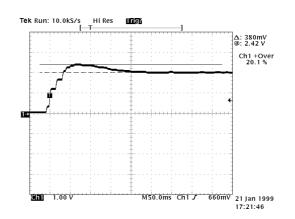

Parameter A6 – Reference value for the analog output can be calculated as follows:

Parameter A6 =
$$\frac{2 \times \text{Nominal motor frequency}}{\text{Resolution parameter 09}}$$
 e.g. A6 = $\frac{2 \times 60 \text{ Hz}}{0.1 \text{ Hz}}$ = 1200

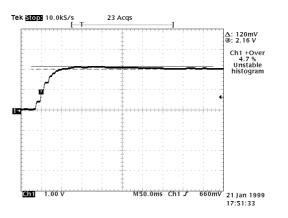

14. Use an oscilloscope at output MET1 in order to display the wave velocity. Set the frequency setpoint to half the nominal frequency (cf. parameter 12) and increase the speed of the drive from 0 to the setpoint. Use short ramps (parameters 25–28) if the process allows this or deactivate the ramps entirely (parameter 72).

O_{14}	Parameter Description	04.08.05
2-14	UD 7000 — 1.5–355.0	07_GB_T2

15. The settings established in steps 9 and 10 are the values for the critically damped control loop (see the illustration below). Starting from this setting, you can now begin to optimise the control loop so that it behaves in the manner required.



16. The above illustration shows the transient response of a drive whose speed controller has been optimized using the method described. If you restrict overshoot, you must increase parameter B2 – Reset time of speed controller. The next illustration shows the acceleration if B2 is increased from 21 to 64.


In the above illustration, you can see that start time is now longer and that coasting is shorter. The start time can be shortened by increasing the proportional gain B1.

17. The next illustration shows the transient response if B1 is increased to 100.

04.08.05	Parameter Description	2 15
07_GB_T2	UD 7000 — 1.5–355.0	2-15

 It is difficult to establish the correct setting for the speed controller since it depends on the application. Theoretically, the correct setting will have been established if the overshoot is 4.3%. In order to achieve this response behaviour, parameter B2 – Reset time of speed controller must be increased again to 236. See the illustration below.

HINT!

If you use a transmission in your application, the mechanical components cause transmission backlash. It is advisable to use higher values in parameter **B2 – Reset time of speed controller** in order to avoid premature wear of the transmission.

6.7.4 Solution to the Problem

As soon as all parameters have been entered, several parameters are available providing information on the current inverter status. In parameter group "0 – Service data I", you can, for instance, display the actual values of the currents, voltages, frequencies and the inverter temperature. For instance, this allows you to check the magnitude of the line input voltage, whether the DC link voltage ($V_{DC \ link} = \sqrt{2} \times V_{Line}$) is correct, whether the inverter is overheating or the magnitude of no-load current.

The data of the motor model used and the current inverter-specific statuses are displayed in parameter groups "E – Service data II" and "F – Service data III" and some of them can also be adapted manually.

Since it frequently cannot be seen immediately whether cause of an error or fault relates to the cabling of the installation, parameterisation of the inverter, incorrect rating or even defective components, the following procedure is recommended for systems with rotational speed feedback:

- Switch the unit on and select parameter BB. This allows you to read off the mechanical angle of rotation of the feedback shaft. If the parameter setting for the feedback data (parameter BA – Resolver pole pair number if using a resolver or parameter BE – Number of encoder lines with attached encoder) is correct, the display will run through an angle of 0–360° with each mechanical revolution of the motor shaft precisely once.
- 2. Reduce the PWM frequency (parameter 79) to 2.00 kHz.
- 3. Reset the parameters (B1 and B2) of the speed controller back to the default values specified in the Parameter Description.
- 4. Run the Test mode suitable for the application (see description, parameter **2A Test mode**) again.
- 5. If the problem persists:

2-16	Parameter Description	04.08.05
2-10	UD 7000 — 1.5–355.0	07_GB_T2

- Check the motor data in parameter group 1.
 - Check the motor cabling:
 - Earth connection.
 - Actual motor cabling.
 - Connection for feedback cables.
 - Never lay the feedback cable together with the motor cabling.
- 6. If the problem has been solved:
 - Run the optimization procedure described in Section "Controller optimization" (again).
 - Once again increase the PWM frequency step-by-step in steps of 0.5 kHz.

6.8 Commissioning an SLV Application

HINT!

This description applies to inverters as of software version A19.01.

6.8.1 Introduction

The "Sensorless Vector Control" procedure $\underline{SLV}^{\otimes}$ has been integrated in the UD 7000. $\underline{SLV}^{\otimes}$ stands for "**S**ensorLess Vector". This is a method for field-orientated control of the asynchronous motor without rotational speed feedback.

Commissioning on the basis of application "50 – <u>SLV</u>² rotational speed control" is described at this point. Special application descriptions are available for the other <u>SLV</u>² applications (51, 52 and 53). For instance, application 51 offers the option of operating with torque control (within the framework of the restrictions of a sensorless method). It is advisable to place application "51 – <u>SLV</u>² torque control" into operation precisely in the same way as the <u>SLV</u>² application with rotational speed control described at this point. The only difference is that, as the last step, one must change parameter **2C** – **Application** from 50 to 51 and reboot the software (see parameter **2D** – **Software reset**), after which it is then possible to operate with torque control.

The <u>SLV</u>[@] rotational speed control has a time-proven structure with speed controller and current controller as will also be known from field-orientated drive with feedback.

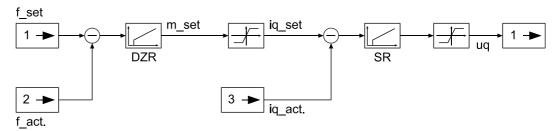
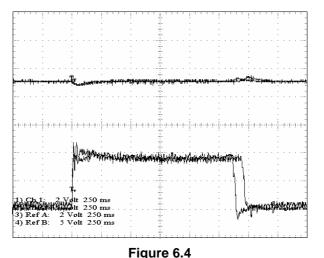



Figure 6.3 Structure with speed controller (DZR) and current controller (SR)

As of software version A19.01, the dynamic response covers the entire rotational speed range. The dynamic response is comparable with that of the FO in the moderate rotational-speed range (see Figure 6.4).

04.08.05	Parameter Description	2-17
07_GB_T2	UD 7000 — 1.5–355.0	2-17

During Test mode, the current controller can now be preset with the same values as fieldorientated drive with feedback (FO). This results in improved in compensation of the torquegenerating current which, in turn, means that the speed controller is easier to set. Normally, all that needs to be done after Test mode is to optimise the speed controller.

Comparison of FO and \underline{SLV}^{\odot} load connection 100% at 40 Hz. The torque-generating current and the actual rotational speed are plotted in each case.

6.8.2 Commissioning Application 50 (SLV Rotational Speed Control)

Ensure that the software version in the unit corresponds to the Operating Instructions. A prompt indicating the software version (e.g. A19.xx) is displayed in the second line on the display during the initialisation phase.

In order to place application "50 – <u>SLV</u>² rotational speed control" into operation, the best way is to use parameter EA – Application-dependent defaults. Enter value 50 at this point and then reboot the inverter software (by switching the unit off and back on again or using parameter 2D – Software reset). After this, essential parameters in the UD 7000 will have been preset with the values required for the <u>SLV</u>² application.

Otherwise, you must enter value 50 in parameter **2C – Application** and reboot the software so that the application-specific parameters are overlaid.

- 2. Always enter the motor data first in parameter group 1. In order to do this, simply transfer the information from the rating plate of the connected asynchronous motor to the corresponding parameters of group 1. This is the most important step for parametersing the inverter. This is the only way of ensuring correct operation of the drive. The protection functions integrated in the inverter (e.g. monitoring of current, rotational speed and torque) will operate reliably only if the inverter is familiar with the correct motor data. The Autotuning function (i.e. the commissioning aids, see parameter 2A Test mode) also necessitate entry of the correct data.
- If step 1 has not been performed, parameter 2A Test mode must be set manually to value 104, i.e. the stator resistance R1 and the leakage reactance Xσ are measured after the first Start command after power-up of the inverter during a test run. The inverter then computes further model variables and controller parameters.
- 4. The next step is to check whether the other parameter values in "Group 2 Basic data" are correct for your application. Frequently, for instance, it is necessary to adapt the acceleration and deceleration times or the maximum frequency. It is also important that you check whether the settings of parameters 29 Control mode and 31 Setpoint selection (frequency setpoint) correspond to your requirements.

2-18	Parameter Description	04.08.05
2-10	UD 7000 — 1.5–355.0	07_GB_T2

- Parameter 29 Control mode defines the sources for the Start/Stop signal and the setpoint for the two operating modes LOCAL (the inverter is controlled via the operator-control unit) and REMOTE (operation via the control terminals).
- If you opt for operating mode REMOTE, you must then, as the next step, inform the inverter of what signal source you wish to use for the frequency setpoint using parameter 31 Setpoint selection (frequency setpoint) or by programming the binary inputs PS1 to PS3 (parameters 99 to 9B). Please follow note ⁴) given for parameter 29 Control mode.
- Define in what manner the binary inputs are to act using parameters 71 Start and Stop options and 91 – Function of inputs FWD and REV.
- 8. Set the rotational speed setpoint to 0 Hz (or the torque setpoint to 0% for closed-loop torque control).

ATTENTION!

If the setpoint is not set to ZERO, the inverter will respond to the set setpoint after the test run, i.e. the motor will start to turn and, under certain circumstances, under full torque.

9. Issue the Start command (via the terminals or keys FWD resp. REV depending on the selected control mode). The Autotuning functions of the UD 7000 are performed – "Test" is shown on the standard display. For this purpose, the inverter independently conducts measurements on the energised motor. In this case, the motor may not be driven externally but may be locked by braking for the operation.

Test mode can be interrupted at any time with a STOP command. In this case, you will see a "Warning ... measurement" warning.

When the test run is complete (i.e. display "Test" on the standard display disappears again), issue the STOP command.

The Autotuning function performs its purpose only if all tests have been run through fully once. If an error message or warning is issued during the measurement, Test mode must be repeated by restarting the unit. If an error message occurs again, check the motor data in group 1 and correct cabling of the installation. Difficulties may also arise if the nominal power values of inverter and motor differ greatly.

If the Autotuning function can, once again, not be performed with no errors, it will be necessary to manually adapt parameters F3 – Stator resistance R1, F4 – Rotor resistance R2 and F5 – Leakage reactance X σ . Ideally, you can obtain the information from the motor manufacturer. Otherwise, the UD 7000 Manual contains a table with the factory default settings for resistances and leakage reactance (in the description of parameters in group F). In this case, the selection must be made on the basis of the nominal motor output and not the nominal inverter output.

If the Autotuning function is performed successfully, parameter **2A** – **Test mode** is set automatically to value 0, i.e. no further tests are performed at a later point.

10. The dynamic behaviour of the drive depends very greatly on the setting of the controllers. Application "50 – <u>SLV</u>² rotational speed control" also features a speed controller (see Figure 6.3) besides the current controller. Whilst the current controller has already been adjusted using the Autotuning function, this must be done manually for the speed controller. The speed controller must be adapted to the load conditions using parameters **B1** – **Speed controller gain** and **B2** – **Reset time of speed controller**. Parameters B1 and B2 must be adapted step-by-step and alternately until the drive displays the required behaviour in relation to dynamic response and overshoot. In principle, optimization can also be performed for <u>SLV</u>² speed control using the same method already described in Section 6.7.3, "Controller Optimization".

04.08.05	Parameter Description	2-19
07_GB_T2	UD 7000 — 1.5–355.0	2-19

HINT!

HINT!

If excessively high gain values are entered, it is possible the drive will show display "Torque limit" immediately after the Start command (even at low loads). After the STOP command, the "Auto-Stop" error may be displayed. The associated "Monitoring function for stopping" is described in the section on parameter **8B** – **Maximum permissible ramp extension in the event of stop**.

If the process allows, the following optimization steps may be performed:

11. Parameter D5 – Actual value of the field-generating current component i_d allows conclusions to be drawn as regards the accuracy of the motor data used in group F to a certain extent. Firstly, you can adapt the value for parameter F3 – Stator resistance R1. Parameter D5 – Actual value of the field-generating current component i_d whose value should then be around 90%, is monitored at a setpoint of 0 Hz. Otherwise, it will be necessary to adapt parameter F3 – Stator resistance R1.

Normally, higher values for the resistance R1 also lead to higher values for parameter **D5 – Actual value of the field-generating current component i**_d. If this not the case, the value of R1 must first of all be greatly reduced (halve the value), after which it should be increased again in small increments.

12. A value of approx. 50% of the nominal frequency must then be selected as the setpoint (e.g. 25 to 30 Hz in the case of a 50 Hz motor); the machine runs under no load or at minimum possible load. Check parameter D5 – Actual value of the field-generating current component i_d whose value should be near to 100% at the frequencies specified. Otherwise, you must adapt parameter F7 – Main reactance X_h until D5 indicates values around 100% under the conditions described above.

Normally, higher values for the magnetising reactance will also lead to higher values for parameter **D5** – **Actual value of the field-generating current component** i_d . If this is not the case, the value of F7 must first of all be greatly reduced (halve the value), after which it must then be increased again in small increments.

Parameter	De	escription		
13D – Filt.Freq.Calc.	some cases, in order to avoid unstable s pass specific variables through a filter p	npute the frequencies in the <u>SLV</u> ^{$(2) model.$ In states in the control loops, it will be necessary to rior to computation. You can enter the time cony default setting 4 ms will need to be changed}		
	despite high gain (parameter B1) and sh	er performing steps 1 to 10, the drive does not achieve the required dynamic response spite high gain (parameter B1) and short integral-action time (parameter B2). The time nstant must now be reduced: first to 2 ms and, if this has no effect, smoothing is dead		
	D7 jumps to and fro constantly between	ends to oscillate or "hums" markedly (parameter the allowed torque limits, e.g. ±150%) despite les (B2). Increase the time constant in 4 ms in- ieved.		
	Value range: 0–32000 ms	Default: 4 ms		

13. The changes to the <u>SLV</u>² structure specified at the start lead to new parameters which are described below:

Parameter	Description		
13E – T. const. Rotor	The rotor time constant of the motor is also included in the slip computation in the <u>SLV</u> ^{\otimes} model. This rotor time constant is computed from the motor data determined with the aid of the Autotuning function. This provides the option of manually adapting the rotor time constant.		
	Value range: 0–32000 ms	Default: 100 ms	
13F – Adjust Ud,dyn	In the field-attenuation range, the inverter may reach its voltage limits before the set current or torque limits are reached. This parameter influences how the available voltage is split over field and torque generation.		
	Value 1 (default setting is 0) ensures that the maximum possible voltage is used for torque generation when the voltage limit is reached.		
	NOTE: the parameter is displayed only if an <u>SLV</u> [®] application is active and if the select maximum frequency is at least 110% of the nominal motor frequency.Value range: 0 or 1Default: 0		

An optimum voltage utilisation can be achieved by entering the value 0 in parameter 62

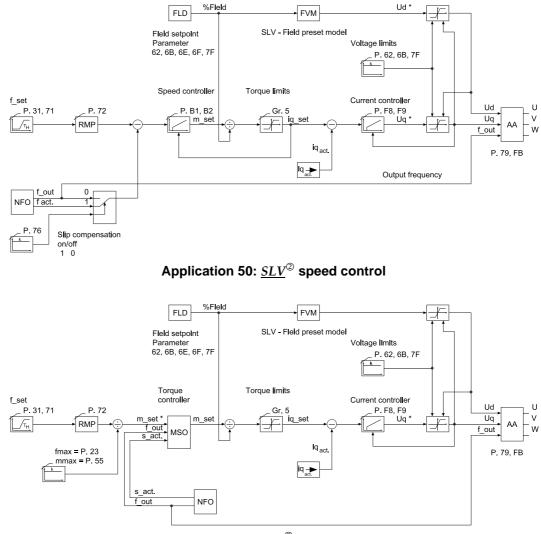
 V/Hz characteristic selection so that voltage control is activated. Then, in the field-attenuation range, the magnitude of the excitation is stabilised at the maximum possible value depending on the available voltage.

If problems occur when using voltage control (e.g. the drive tends to oscillate in the fieldattenuation range), reset parameter 62 back to the factory default setting (setting 3). Field attenuation is then performed controlled as of the break-point frequency (parameter 21) indirectly proportional to the output frequency. In such cases, it is important to enter the right break-point frequency (parameter 21). The entered value should be approx. 86% of the nominal motor frequency f_{nom} :

 $f_{knee} < = 0.866 \times f_{nom}$

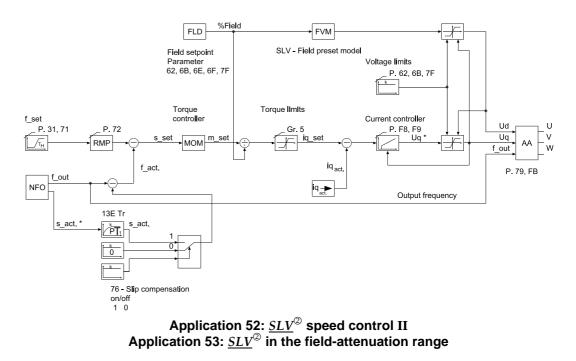
In the event of parameter **12 – Rated frequency** being 50 Hz and step 1 being performed, the default at 43 Hz is already correct.

- 15. If the speed of rotation at the motor shaft is not compensated precisely enough when connecting loads (through to the nominal load), it may be necessary to adapt the rotor time constant with the aid of parameter F6 Rotor time constant setting.
- 16. Parameter FB PWM frequency slaving. In order to improve the running characteristics of the machine at low rotational speeds, the PWM frequency can be automatically corrected to the frequency setpoint. This may cause louder noise at low rotational speeds. PWM frequency correction is also recommended for heavy starting.
- Parameter 7F Control method. Trapezoidal modulation (parameter 7F = 2) should be used at maximum frequencies of high rated frequency since this method achieves optimum voltage utilisation.
- 18. Parameter 76 Slip compensation. If step 1 has been performed, slip compensation (parameter 76) will be activated by default, i.e. the speed controller stabilises the rotor frequency at the selected frequency setpoint. If there are no problems using slip compensation, the function should always remain activated. It has been observed that the non-feedback drive moves more dynamically into the field-attenuation range under certain circumstances if slip compensation is deactivated (e.g. if the motor data, both the data entered and the data determined by the Autotuning function, is not adequately precise).
- 19. The following adaptation may be necessary for operation of application 50 in the fieldattenuation range:


04.08.05	Parameter Description	2 21
07_GB_T2	UD 7000 — 1.5–355.0	2-21

- At all events, the ramp times must be adapted to the load conditions.
- The gain of the speed controller should be reduced.
- Compensation with the aid of gain boosting (parameters B3 and B4) is possible in order to achieve a good dynamic response nevertheless at "normal" speeds of rotation.

6.9 Note on Commissioning further to Application 51


It is advisable to place application " $51 - \underline{SLV}^{\textcircled{O}}$ closed-loop torque control" into operation precisely in the same way as $\underline{SLV}^{\textcircled{O}}$ speed control (see Section 6.8.1, "Introduction"). The only difference is that, as the last step, you must change parameter **2C** – **Application** from 50 to 51 and reboot the software (see parameter **2D** – **Software reset**), after which it is possible to operate with torque control.

6.9.1 Signal Flow Diagrams

Application 51: <u>SLV</u>² torque control

2-22	Parameter Description	04.08.05
2-22	UD 7000 — 1.5–355.0	07_GB_T2

The application 52 shown here represents a step towards simplified commissioning with a "single-controller solution". Application 53 supplements the <u>SLV</u>[@] variants with a solution for the field-attenuation range. Please refer to the application description "<u>SLV</u>[@] applications in the UD 7000" for details on applications 52 and 53.

04.08.05	Parameter Description	2 22
07_GB_T2	UD 7000 — 1.5–355.0	2-23

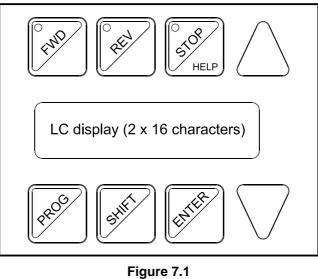
Symbol Description further to the Signal Flow Diagrams

Symbol	Significance	Gated UD 7000 parameters
AA	Automatic triggering. That part of the inverter software which generates the pulse patterns from volt- age and frequency setpoints.	79 – PWM frequency FB – PWM frequency slaving
DZR	Speed controller	B1 – Speed controller gain B2 – Reset time of speed controller (B3, B4 – Gain boosting)
f _{act.}	Actual value of the motor rotational fre- quency	09 – Actual frequency
%Field	Percentage field setpoint	FE – Excitation
FLD	Field preset module (influencing the magnetising current and implementa- tion of field attenuation)	21 – Knee frequency 62 – V/Hz characteristic selection
f _{max}	Maximum frequency	23 – Maximum frequency
f _{out}	Output frequency (stator frequency)	01 – Output frequency
f _{set}	Frequency setpoint	 31 – Setpoint selection (frequency setpoint) 3F – Frequency setpoint on the basis of ramp 71 – Start and Stop options
FVM	$\underline{SLV}^{\oslash}$ field preset model	D5 – Actual value of the field-gener- ating current component i _d
i _q	Actual value of the current component for torque generation	D6 – Actual value of the torque-gen- erating current component i _q
i _{q,set}	Setpoint of the current component for torque generation	D7 – Setpoint of the torque-generat- ing current component i _{q,set}
M _{Limits}	Torque limitation	Parameter group 5
m _{max}	Maximum torque	55 – Torque factor LIM input
мом	Torque setpoint input in the case of structure without speed controller (ap- plication 52). The setpoint of the torque to be injected is computed directly from the slip set- point s _{set}	See Application Description
MSO	 Torque setpoint input in the case of application 51. Closed-loop torque control, allowing for the special cases as follows: Undershoot of the minimum frequency Reaching the maximum frequency Stop command 	
m _{set}	Setpoint of the torque	
	Table 6.1	

2.24	Parameter Description	04.08.05
2-24	UD 7000 — 1.5–355.0	07_GB_T2

Symbol	Significance	Gated UD 7000 parameters			
SLV	 <u>SLV</u>²-Model. Computation of output frequency f_{out}, actual frequency f_{act.} and slip s_{act.} 				
RMP	Ramp module	72 – Ramp function selection			
s _{act.}	Actual slip	76 – Slip compensation			
SR	Current controller	F8 – Current controller gain F9 – Specific current controller reset time			
s _{set}	Slip setpoint. The slip injected in the motor in order to compensate for the load				
T _R	Rotor time constant	Parameter 13E – Rotor time constant			
%Tr	Percentage adaptation of the rotor time constant for slip compensation	F6 – Rotor time constant setting (Tr adaptation for slip compensation)			
U _d , U _q	Voltage components in the fixed-stator coordinate system				
	Table 6.1				

6.10 Stepper Control


The Berges inverter UD 7000 features a simple step-by-step control allowing simple function sequences to be implemented by the inverter itself as a function of programmable boundary conditions (e.g. as a function of the status of the binary inputs).

The step-by-step control is a special application and is thus not described in greater detail in this Manual.

04.08.05	Parameter Description	2.25
07_GB_T2	UD 7000 — 1.5–355.0	2-25

7 Keys and Displays/Indicators

7.1 Display and Operating Unit (ABE)

Display and operating unit

The inverter control can be switched between the operating mode and the program mode.

7.2 Display in the Operating Mode

For the operating mode, you can choose between standard display 1 or 2.

7.2.1 Standard Display 1

Control mode		Status		Parameter set
	LOC	Stop	Set: 1	
	SET	50.00 Hz	5 %	
Direction of rotation		Frequency setpoint		Output power referred to the motor's rated power
Figure 7.2 Operating mode – standard display 1				

DISPLAY	DESCRIPTION		
[Address]	The address [address] is selected through the serial interface (RS 485) (SIO) $^{(1)}$		
Accelerate	The motor accelerates		
At speed	The motor frequency is equal to the frequency setpoint		
Autostrt.off	The start command has been issued, but the autostart condition is not met		
Control	The inverter receives start/stop commands through the serial interface (RS 485) (SIO) $^{(1)}$		
Decelerate	The motor decelerates		
Table 7.1			

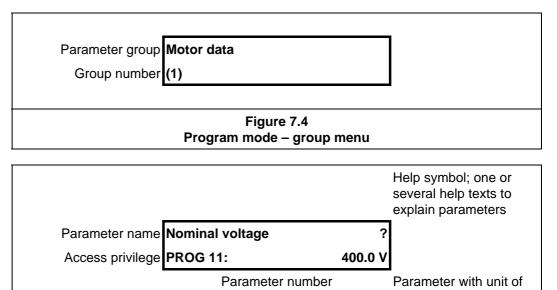
2.26	Parameter Description	04.08.05
2-26	UD 7000 — 1.5–355.0	07_GB_T2

DISPLAY	DESCRIPTION		
Dyn. brake	The braking chopper is in use		
Error	Inverter in the error state		
FWD	Right rotation selected		
Jog	Jog mode only as long as the FWD or REV key is pressed. The inverter output is active		
LOC	LOCAL mode, control by keypad		
Program	The inverter is parameterised through the serial interface (RS 485) (SIO) $^{(1)}$		
REM	REMOTE mode, control through terminals		
REV	Left rotation selected		
SET	No direction of rotation selected ("STOP" status). The frequency setpoint is displayed as the frequency		
Set: 1 Set: 2 Set: 3	Display of the actual active set of parameters. The set of parameters can be switched via binary inputs, for example.		
SIO	Control through serial interface (RS 485). Special form of REMOTE mode. $^{(1)}$		
Speed search	The inverter synchronises the output frequency to the rotation frequency of the motor that is already rotating		
Stop	The inverter output is inactive		
Test	The inverter is in test mode		
Torque limit	The motor is running at the torque limit		
Zero speed	The inverter output is active, but the motor frequency is 0		
	Table 7.1		

(1) Parameterising the inverter via the serial RS 485 port does not require SIO mode. "SIO mode" means only that the Start-Stop signals are supplied by the RS 485 interface in REMOTE mode.

7.2.2 Standard Display 2

You normally change from standard display 1 to 2 in the REM control mode by means of the \blacktriangle or \checkmark keys. In the LOC mode, you can change the display by means of the parameter EC.


The display can be switched over to the standard display 2 in order to display the read-only parameters (shown as X and Y here), for example the output frequency and motor current.

04.08.05	Parameter Description	2 27
07_GB_T2	UD 7000 — 1.5–355.0	2-21

NOTE:

Each read-only parameter may be transferred to the standard display 2. The required readonly parameter must be selected for this purpose. Pressing keyboard short-cut SHIFT + ENTER (press key SHIFT first, hold it then press key ENTER) transfers the parameter to the upper position of the standard display 2. This shifts the parameter which was previously in the upper position to the lower position. The settings of standard display 2 are stored automatically in power-failsafe manner.

7.2.3 Display in the Program Mode

In the case of parameters that have help information, their program name is followed by a question mark (?).

DISPLAY	DESCRIPTION
PROG	Parameter is editable
VIEW	Read-only parameter (not editable)
Table 7.2 Access privilege	

The following display appears when a parameter is edited and stored in non-volatile memory by pressing the "ENTER" key:

***	STORED ***	
	Figure 7	6

Storage message

You can work with a password as the operator privilege for editing parameters (see also parameter 87). In this case, the password is queried before you edit the first parameter.

2-28	Parameter Description	04.08.05
	UD 7000 — 1.5–355.0	07_GB_T2

PASSWORD \rightarrow :

Figure 7.7 Program mode Password input

The following message appears briefly when you enter the password correctly: "*** CODE OK. ***".

7.2.4 Operating Examples

Example 1: Incrementing the Frequency Setpoint in the LOCAL Mode

LOC	Stop	Set: 1
SET	0.00 Hz	0 %

Press the (key 1× (additionally pressing key SHIFT once provides a higher rate of change of the data value).

LOC	Stop	Set: 1
SET	0.01 Hz	0 %

Example 2: Storing the Set Frequency Setpoint in the LOCAL Mode

LOC	Stop	Set: 1
SET	0.01 Hz	0 %

*** STORED ***	

The standard display 1 appears after approx. 3 seconds.

LOC	Stop	Set: 1
SET	0.01 Hz	0 %

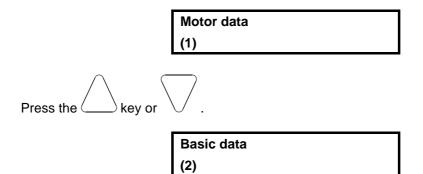
Example 3: Switching from Standard Display 1 to 2 (in REMOTE Mode only)

LOC	Stop	Set: 1
SET	0.01 Hz	0 %

Press the key or

04.08.05	Parameter Description	2-29
07_GB_T2	UD 7000 — 1.5–355.0	2-29

VIEW X:	0.01 Hz
VIEW Y:	0.0 A


Example 4: Switching from the Operating Mode to the Program Mode

LOC	Stop	Set: 1
SET	0.01 Hz	0 %

Motor data	
(1)	

Example 5: Switching to another Parameter Group

Example 6: Switching from the Parameter Group to Subparameter List

Press the	2200	key
		,

Nominal voltage	400.0 V
PROG 11:	

Example 7: Editing the "Nominal voltage" Parameter

Nominal voltage	400.0 V
PROG 11:	

í	CHIE	
Press the	2	key.

Parameter number 11 flashes.

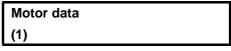
2-30	Parameter Description	04.08.05
2-30	UD 7000 — 1.5–355.0	07_GB_T2

Press the \bigvee key: the value is counted down (additionally pressing key SHIFT once provides a higher rate of change of the data value).

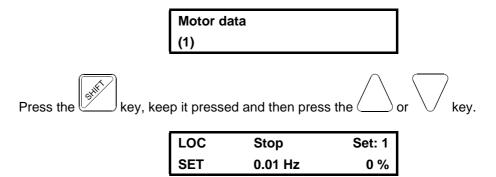
Press the key: the value is counted up (additionally pressing key SHIFT once provides a higher rate of change of the data value).

Nominal voltage	380.0 V
PROG 11:	

	NIL	
Press the	٧	key.

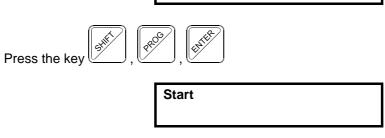

The parameter number 11 no longer flashes.

Nominal voltage	380.0 V
PROG 11:	


Example 8: Switching from the Subparameter List to the Parameter Group

Nominal voltage	380.0 V
PROG 11:	

Press the key. Any changed parameter values are not stored.


Example 9: Switching from the Program Mode to the Operating Mode

04.08.05	Parameter Description	
07_GB_T2	UD 7000 — 1.5–355.0	2-31

or switch off the line and switch on again.

<u>, , , , , , , , , , , , , , , , , , , </u>	Parameter Description	04.08.05
2-32	UD 7000 — 1.5–355.0	07_GB_T2

7.3 On-Line Help

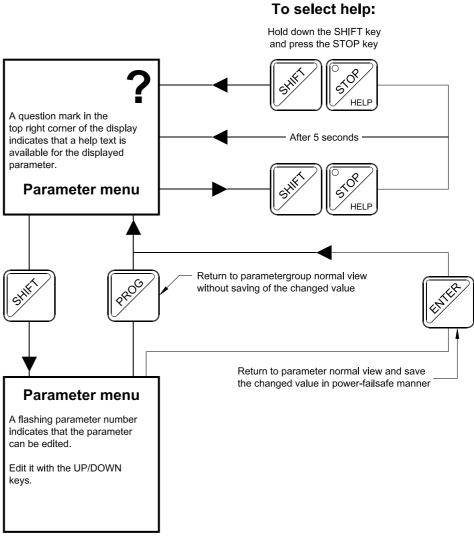


Figure 7.8

7.4 Key Functions

7.4.1 Control Keys

	FUNCTION IN THE OPERATION MODE		
KEY	LOCAL MODE	REMOTE MODE	
Start the motor with clockwise rotation allowing for the set ramps until the set setpoint is reached. If the motor is already turning counter-clockwise, it will de- celerate through to rotational speed 0, change the di- rection of rotation and accelerate to the setpoint fre- quency set.			
Table 7.3 Control keys			

04.08.05	Parameter Description	
07_GB_T2	UD 7000 — 1.5–355.0	2-33

	FUNCTION IN THE OPERATION MODE		
KEY	LOCAL MODE	REMOTE MODE	
RE	Start the motor with counter-clockwise rotation allow- ing for the set ramps until the set setpoint is reached. If the motor is already turning clockwise, it will decel- erate through to rotational speed 0, change the di- rection of rotation and accelerate to the frequency setpoint set. This key can basically be disabled via parameter 29 – Control mode .	ed. cel- i- No function. y	
STOR HELP	 Depending on parameter 71 – Start and Stop options, one of the following happens: Deceleration using the ramps or Inverter disable → free slowing-down of the motor. 	Free slowing-down of the motor (EMERGENCY- STOP) if this function has not been deactivated in parameter 71. Error 0 "Emergency-Stop" is dis- played and must be acknowledged with key PROG, SHIFT or ENTER and the Start command must be reissued.	
Table 7.3 Control keys			

7.4.2 Control and Parameter Keys – Single Operation

	FUNCTION			
	OPERATING MODE	PROGRAM MODE		
KEY	STANDARD DISPLAY 1 OR 2	PARAMETER GROUP	PARAMETER LIST	DATA INPUT
			Skip to next parameter or from the last parameter to the first parameter.	Increments the parame- ter (increase in the rate of change after 5 s). ⁽¹⁾
	<i>LOCAL mode:</i> Decrements the frequen- cy setpoint in 0.01 Hz steps (after 5 s, increase in the rate of change). ⁽¹⁾ <i>REMOTE mode:</i> Switches over between standard displays 1 and 2 (see also Example 3).	Skip to the previous pa- rameter group resp. from parameter group 0 to the last parameter group.	Skip to the previous pa- rameter resp. from the first parameter to the last parameter.	Decrements the parame- ter (increase in the rate of change after 5 s). ⁽¹⁾
Table 7.4 Control and parameter keys – single operation				

(1) Additionally pressing key SHIFT once provides a higher rate of change of the data value.

		FUNC	TION	
	OPERATING MODE		PROGRAM MODE	
KEY	STANDARD DISPLAY 1 OR 2	PARAMETER GROUP	PARAMETER LIST	DATA INPUT
+ Or +	No function.	No function.	No function.	The parameter just edited is reset to the factory de- fault setting. *** Default! *** is dis- played for one second on the display and the de- fault value is then shown. The value can then be edited further until PROG or ENTER is pressed.
8800	Skip to parameter group and switch to Program mode (see also Example 4). Acknowledgement of an error. ⁽¹⁾	Opens the parameter list relating to the selected parameter group (see al- so Example 6). Acknowl- edgement of an error. ⁽¹⁾	Skip back to the parame- ter group (see also Exam- ple 8). Acknowledgement of an error. ⁽¹⁾	Abort data entry (without saving any changes) and skip back to the parame- ter group. Acknowledge- ment of an error. ⁽¹⁾
- State	Acknowledgement of an error. ⁽¹⁾	Acknowledgement of an error. ⁽¹⁾	Transition to data entry \rightarrow parameter number blinks. It is then possible to set the required value with UP or DOWN. Acknowl- edgement of an error. ⁽¹⁾	Interrupt data input (with- out saving any modifica- tions) and return to the parameter group with PROG. Perform power- failsafe storage of the set parameter value by pressing ENTER. Ac- knowledgement of an er- ror. ⁽¹⁾
(inter-	in power-failsafe manner (see also Example 2). The inverter acknowledg- es the entry with ** Set Stored **. Acknowl-	Power-failsafe storage of all parameters of this group. The UD 7000 indi- cates that the entire group has been stored with display ** Gr. Stored **. Acknowl- edgement of an error. ⁽¹⁾	Acknowledgement of an error. ⁽¹⁾	Power-failsafe storage of the set parameter value. The UD 7000 acknowl- edges acceptance of the new value with display: *** Stored ***. Acknowl- edgement of an error. ⁽¹⁾
	Cor	Table 7.4 htrol and parameter keys		

(1) If the PROG, SHIFT or ENTER key is pressed, the message is reset on the ABE (display and operator-control unit). Acknowledgement of the error message does not cancel the cause of the error. Errors may be also still be pending after reset (see also Chapter 8.17, "Error States").

04.08.05	Parameter Description	2-35
07_GB_T2	UD 7000 — 1.5–355.0	2-35

7.4.3 Control and Parameter Keys – Combinations with SHIFT

	FUNCTION									
	OPERATING MODE		PROGRAM MODE							
KEYS	STANDARD DISPLAY 1 OR 2	PARAMETER GROUP	PARAMETER LIST	DATA INPUT						
	No function.	No function.	Transition to data entry \rightarrow parameter number blinks. It is then possible to set the required value with UP or DOWN. ⁽¹⁾	No function.						
	No function.	No function.	Transition to data entry \rightarrow parameter number blinks. It is then possible to set the required value with UP or DOWN. ⁽¹⁾	No function.						
+ 300 HELP	No function.	No function.	Calling the Help function (see also Example 10). <i>On the Help display:</i> Display of the next Help page or quitting the Help function (Help is also quit automatically after 5 sec- onds). ⁽¹⁾	Calling the Help function (see also Example 10). <i>On the Help display:</i> Display of the next Help page or quitting the Help function (Help is also quit automatically after 5 sec- onds). ⁽¹⁾						
+ 5 ¹¹¹	No function.	No function.	No function.	Maximum rate of change of the data value (Press key UP, keep it pressed and then press key SHIFT once). ⁽³⁾						
+	No function.	No function.	No function.	Maximum rate of change of the data value (Press key DOWN, keep it pressed and then press key SHIFT once). ⁽³⁾						
+	No function.	Quitting Program mode and switching over to the standard display 1/2. ⁽²⁾	Incrementing the data values in steps of one, ten or one hundred, de- pending on value range and resolution (keep key SHIFT pressed and brief- ly press key UP). ⁽²⁾	Incrementing the data values in steps of one, ten or one hundred, de- pending on value range and resolution (keep key SHIFT pressed and brief- ly press key UP). ⁽²⁾						
	No function.	Quitting Program mode and switching over to the standard display 1/2. ⁽²⁾	Decrementing the data values in steps of one, ten or one hundred, de- pending on value range and resolution (keep key SHIFT pressed and brief- ly press key DOWN). ⁽²⁾	Decrementing the data values in steps of one, ten or one hundred, de- pending on value range and resolution (keep key SHIFT pressed and brief- ly press key DOWN). ⁽²⁾						
	Control	Table 7.5 and parameter keys – co								

0.00	Parameter Description	04.08.05
2-36	UD 7000 — 1.5–355.0	07_GB_T2

		FUNC	TION	
	OPERATING MODE		PROGRAM MODE	
KEYS	STANDARD DISPLAY 1 OR 2	PARAMETER GROUP	PARAMETER LIST	DATA INPUT
	Skip to parameter group and switch to Program mode but only the param- eters which differ from the factory default setting are displayed in all parameter groups. NOTE: You must return to the operating mode from the menu with SHIFT + UP and start Program mode with PROG in order to display all parameters again. ⁽¹⁾	Only the parameters dif- fering from the factory de- fault setting are displayed in the current parameter group. NOTE: If the parameter group is not opened, there are no deviations from the facto- ry default settings in this group. If the group is quit, all parameters are dis- played again. ⁽¹⁾	Transition to data entry \rightarrow parameter number blinks. It is then possible to set the required value with UP or DOWN. ⁽¹⁾	Transition to data entry \rightarrow parameter number blinks. It is then possible to set the required value with UP or DOWN. ⁽¹⁾
+ Ester	REMOTE mode: Starting Test mode under specific preconditions (details as for parameter 2A – Test mode). LOCAL mode: No function. ⁽¹⁾	No function.	Read-only parameters: Each read-only parame- ter can be transferred to the standard display 2. The required read-only parameter must be se- lected for this purpose. The parameter is trans- ferred to the upper posi- tion of the standard dis- play (power-failsafe) by pressing SHIFT + EN- TER. This shifts the pa- rameter which was previ- ously in the upper posi- tion to the lower position. Editable parameter: As for ENTER. ⁽¹⁾	Transition to data entry \rightarrow parameter number blinks. It is then possible to set the required value with UP or DOWN. ⁽¹⁾
	Control	Table 7.5 and parameter keys – co	mbinations with SHIFT	

NOTES:

- (1) In the case of SHIFT/FWD, SHIFT/REV, SHIFT/STOP, SHIFT/PROG and SHIFT/EN-TER, you must first press the SHIFT key, keep it pressed and then press the other key in each case.
- (2) In the case of SHIFT/UP and SHIFT/DOWN, always press key SHIFT first, keep it pressed and then briefly press key UP or DOWN.
- (3) In the case of UP/SHIFT and DOWN/SHIFT always press key UP or DOWN first, keep it pressed and then briefly press key SHIFT once.

04.08.05	Parameter Description	0.07
07_GB_T2	UD 7000 — 1.5–355.0	2-37

7.4.4 LED Status Display

DISPLAY	MEANING						
Red LED in STOP key	Stop state						
Green LED in FWD key	Right-hand rotation						
Green LED in REV key	Left-hand rotation						
Green LEDs in FWD and REV keys	DC braking or Test mode						
	Table 7.6 LED status display						

2.20	Parameter Description	04.08.05
2-38	UD 7000 — 1.5–355.0	07_GB_T2

8 Parameter Description

8.1 Group 1 – Motor Data

HINT!

Before the drive is commissioned, the parameters in this group must be adapted to local conditions to ensure that the motor/device are tuned optimally.

The following calculations must be carried out in order to determine the correct data in the case of applications in which several motors are connected parallel:

ATTENTION!

Motors with differing nominal rotational speed, number of poles, power factor, nominal output and nominal current may be operated only under application "0" and with controlled characteristic (parameter **62** – **V/Hz characteristic selection**, setting 2). In all cases, the nominal motor voltage **must** be the same.

1. Rated voltage:

Enter the motor voltage specified on the motor rating plate. The connected motors must all have the same nominal voltage. Ensure that they have the same vector group (\land or \triangle).

2. Rated frequency:

Enter the frequency specified on the rating plate.

EXAMPLE (special case):

Rating plate specification, e.g. 230/400 V, 50 Hz, delta/star. The motor should be operated in a "delta" circuit with a 400 V unit. The nominal frequency can then be calculated as follows:

$$F_{nom} = \sqrt{3} \times 50 \text{ Hz} = 87 \text{ Hz}$$

CAUTION: parameter 21 – Knee frequency must also be set to this value.

3. Power factor:

Enter the power factor specified on the rating plate.

4. Rated speed:

Enter the nominal rotational speed specified on the rating plate.

The motor is operated up to 87 Hz as described in "2." above. The slip speed must then be determined first:

 $n_{slip} = n_{sync} - n_{nom}$

The synchronous speed at 87 Hz is then calculated:

 $n_{\text{sync (87 Hz)}} = \frac{87 \text{ Hz} \times 60}{p}$

where p corresponds to the number of pole pairs. The rotational speed to be entered is then as follows:

 $n_{nom (87 Hz)} = n_{sync (87 Hz)} - n_{slip}$

5. Rated power:

The outputs of the motors must be added.

The motor is operated up to 87 Hz as described above in "2.". In this case, the output issued by the motor at 87 Hz must be used for calculation. This means that it is calculated as follows in the example specified:

04.08.05	Parameter Description	2 20
07_GB_T2	UD 7000 — 1.5–355.0	2-39

SL/SLV

$$P(87 Hz) = P(50 Hz) \times \frac{87 Hz}{50 Hz}$$

6. Rated current:

The nominal currents of the motors must be added. The currents of the vector group used must be used (\land or \triangle).

11 – Rated voltage

Rated motor voltage as detailed on the motor name plate. If the motor allows different switching types (\land or \triangle), the voltage that corresponds to the switching type used must be entered.

◊ Value range: 100.0–480.0 V

Default Europe: see Tables 8.1/8.2 Default USA: see Tables 8.3/8.4 (see also parameter EA)

SL / FO / SLV / EC

SL/FO/SLV

12 – Rated frequency

Rated motor frequency as detailed on the motor name plate or frequency at which the motor must be operated in order to reach the rated speed under rated conditions.

◊ Value range: 10.0–1000.0 Hz

Default Europe: see Tables 8.1/8.2 Default USA: see Tables 8.3/8.4 (see also parameter EA)

13 – Power factor

Power factor $\cos \phi$ as detailed on the motor name plate.

NOTES:

- 1) This parameter is not relevant when using a brushless servo motor.
- 2) The power factor $\cos \varphi$ can also be computed using the following formula with known or estimated efficiency η :

$$\cos \varphi = \frac{\mathsf{P}_{\mathsf{nom}}}{1.73 \times \mathsf{I}_{\mathsf{nom}} \times \mathsf{V}_{\mathsf{nom}} \times \eta}$$

Explanation of symbols:

cos φ – Power factor (parameter 13)	[1]
	[W]
I _{nom} – Nominal motor current (parameter 16)	[A]
V _{nom} – Nominal motor voltage (parameter 11)	[V]
η – Efficiency	[1]

3) If US motors are used, the specification of the power factor may be missing on the rating plate. Should the text "N.L. Amps" be present instead, the power factor $\cos \varphi$ can be calculated to a good degree of approximation as follows:

Assumption:

2

N.L. Amps = sin $\phi \times$ Rated current

$$\Rightarrow sin \phi = \frac{N.L. \text{ Amps}}{\text{Rated current}} \Rightarrow \phi = sin^{-1} \left(\frac{N.L. \text{ Amps}}{\text{Rated current}} \right)$$

$$\Rightarrow cos \ \phi \ = \ cos \left(sin^{-1} \left(\frac{N.L. \ Amps}{Rated \ current} \right) \right)$$

2-40	Parameter Description	04.08.05
2-40	UD 7000 — 1.5–355.0	07_GB_T2

Group 1 – Motor Data

Using the table below, you can determine the power factor $\cos \phi$ directly from the quotient <u>N.L. Amps</u>

Rated current

N.L. Amps Rated current	0.31	0.44	0.51	0.54	0.57	0.60	0.63	0.65	0.67	0.69	0.71	0.76	0.8	0.83
cos φ	0.95	0.9	0.86	0.84	0.82	0.80	0.78	0.76	0.74	0.72	0.70	0.65	0.6	0.55

- 4) If you also do not know the specification of the "N.L. amps" and efficiency η , please choose the value for cos ϕ from Tables 8.1/8.2 or 8.3/8.4 as a function of the nominal motor output.
- ◊ Value range: 0.50–1.00

Default Europe: see Tables 8.1/8.2 Default USA: see Tables 8.3/8.4 (see also parameter EA)

SL / FO / SLV / EC

SL / FO / SLV / EC

SL / FO / SLV / EC

14 – Rated speed

Rated motor speed as detailed on the motor name plate.

◊ Value range: 100–32500 rpm

Default Europe: see Tables 8.1/8.2 Default USA: see Tables 8.3/8.4 (see also parameter EA)

15 - Rated power

Rated motor power as detailed on the motor name plate.

◊ Value range: 0.01–100.00 kW

Default Europe: see Tables 8.1/8.2 Default USA: see Tables 8.3/8.4 (see also parameter EA)

16 – Rated current

Rated current as detailed on the motor name plate. If the motor allows different switching types (\land or \triangle), the current that corresponds to the switching type used must be entered.

◊ Value range: 0.1–300.0 A

Default Europe: see Tables 8.1/8.2 Default USA: see Tables 8.3/8.4 (see also parameter EA)

	EUROPE (400 V/50 HZ)													
Prated inverter	(kW)	1.5	2.2	3.0	4.0	5.5	7.5	11.0	15.0	22.0	30.0	37.0	45.0	55.0
V _{rated} [V] Parameter 11								400						
f _{rated} [Hz]	Parameter 12		50											
cos φ (%_{eff})	Parameter 13	0.82	0.82	0.82	0.82	0.83	0.83	0.85	0.85	0.81	0.86	0.86	0.87	0.89
n _{rated} [rpm]	Parameter 14	1410	1415	1415	1435	1450	1450	1455	1455	1460	1465	1470	1470	1478
P _{rated} [kW]	Parameter 15	1.5	2.2	3.0	4.0	5.5	7.5	11.0	15.0	22.0	30.0	37.0	45.0	55.0
I _{rated} [A]	Parameter 16	3.7	5.2	6.8	9.2	11.7	15.6	22.5	30.0	43.0	58.0	71.0	85.0	102.0
	Table 8.1													

04.08.05	Parameter Description	2-41
07_GB_T2	UD 7000 — 1.5–355.0	2-41

	EUROPE (400 V/50 HZ)										
P _{rated inverter} (kW)		75	90	110	132 (VT)	132 (CT)	160 (CT)	200 (CT)	250 (CT)	315 (VT)	355 (VT)
V _{rated} [V]	Parameter 11	400									
f _{rated} [Hz]	Parameter 12		50								
cos φ (% _{eff})	Parameter 13	0.86	0.87	0.86	0.87	0.87	0.87	0.86	0.86	0.88	0.86
n _{rated} [rpm]	Parameter 14	1475	1480	1485	1485	1485	1485	1484	1490	1488	1490
P _{rated} [kW]	Parameter 15	75	90	110	132	132	160	200	250	315	355
I _{rated} [A]	Parameter 16	150	180	210	250	250	300	370	460	570	610
	Table 8.2										

	USA (460 V/60 HZ)														
P _{rated inverter}	1.5	2.2	3.0	4.0	5.5	7.5	11.0	15.0	18.5	22.0	30.0	37.0	45.0	55.0	
V _{rated} [V] Parameter 11			460												
f _{rated} [Hz]	Parameter 12		60												
cos φ (% _{eff})	Parameter 13	0.78	0.785	0.787	0.79	0.72	0.76	0.76	0.75	0.79	0.82	0.86	0.85	0.86	0.86
n _{rated} [rpm]	Parameter 14	1750	1755	1755	1755	1765	1774	1770	1780	1775	1773	1775	1770	1775	1775
P _{rated} [kW]	Parameter 15	1.5	2.2	2.9	3.7	5.5	7.3	10.9	14.6	18.3	21.9	29.2	36.5	43.8	56.0
I _{rated} [A]	Parameter 16	3.0	4.2	5.5	6.7	10.7	13.5	20.0	27.0	32.5	36.5	46.0	58.0	69.0	84.3
					Та	ble 8.	3	Table 8.3							

	USA (460 V/60 HZ)										
P _{rated inverter} (kW)		75	90	110	132 (VT)	132 (CT)	160 (CT)	200 (CT)	250 (CT)	315 (VT)	355 (VT)
V _{rated} [V]	V _{rated} [V] Parameter 11 460										
f _{rated} [Hz]	Parameter 12		60								
cos φ (%_{eff})	Parameter 13	0.865	0.87	0.875	0.86	0.86	0.84	0.9	0.9	0.9	0.9
n _{rated} [rpm]	Parameter 14	1785	1788	1790	1790	1790	1790	1790	1790	1790	1790
P _{rated} [kW]	Parameter 15	73.0	91.3	110.0	146.0	146.0	184.0	220.0	257.0	257.0	257.0
I _{rated} [A]	Parameter 16	115.0	143.0	170.0	230.0	230.0	295.0	327.0	385.0	385.0	385.0
	Table 8.4										

NOTES:

The default values depend on the power of the inverter.

The following parameters are automatically recomputed if changes are made to parameters in the "Motor data" group:

ParameterF7 – Main reactance XhParameterF8 – Current controller gainParameterF9 – Specific current controller reset time

2-42	Parameter Description	04.08.05	
2-42	UD 7000 — 1.5–355.0	07_GB_T2	

SL / FO / SLV / EC

8.2 Group 2 – Basic Data

Knee frequency

The motor is operated in the frequency range from Zero up to the knee frequency with rated

excitation. This means that the inverter emits, at this frequency and rated load of the motor, its rated voltage.

This parameter needs to be specified only if parameter 62 – V/Hz characteristic selection has been programmed for functions 2, 3, 4 or 5 (controlled field attenuation). In the other cases, the inverter automatically implements field attenuation as a function of the available voltage and the load conditions.

Value range: 10.0-1000.0 Hz \Diamond

Default Europe: 50.0 Hz Default USA: 60.0 Hz (see also parameter EA)

*SLV*² value range: 10.0–1000.0 Hz

Default Europe: 43.0 Hz Default USA: 51.0 Hz (see also parameter EA)

22 – Boost

Compensation factor for setting the excitation of the motor with regard to the V/Hz characteristic determined by the inverter on the basis of the motor data (parameter group 1 or measurement; see also parameter 2A). The compensation factor is active over the measured nominal range of the motor. A value of 100% corresponds to the characteristic determined by the inverter.

When this parameter is modified, the following parameters are recomputed automatically:

Parameter **F8 – Current controller gain**

Parameter F9 – Specific current controller reset time

This correction factor acts in the case of parameters 22 – Boost and 61 – Autoboost.

Setting excessive values may result in swift heating up of the motor at low speeds.

ATTENTION!

NOTE: this parameter is of no relevance in version with current control (EC/FO) and in the case of <u>SLV</u>^{\mathcal{Q}}. No display in the case of <u>SLV</u>^{\mathcal{Q}}.

Value range: 0.0-600.0%

23 – Maximum frequency

Top frequency limit that is never exceeded by the inverter. The "Minimum frequency" and "Maximum frequency" parameters also serve to scale the analog setpoint inputs.

NOTE: for <u>SLV²</u> applications, the maximum frequency should not amount to more than twice the rated motor frequency. For operation in the field attenuation range, the speed controller must be optimized again.

Value range: 1.0-875.0 Hz

Default Europe: 50.0 Hz Default USA: 60.0 Hz (see also parameter EA)

- Minimum frequency

Bottom frequency limit, which the inverter does not fall below in a stationary fashion. The minimum frequency is evaluated differently depending on the setpoint source (see parameter 31, notes 1 and 2).

Value range: 0.0-100.0 Hz \Diamond

Default: 0.0 Hz

04.08.05	Parameter Description	∩ / 2
07_GB_T2	UD 7000 — 1.5–355.0	2-43

SL – OE

Default: 100.0% SL/FO/SLV/EC

SL / FO / SLV / EC

25 – Acceleration time 1

Standard acceleration time. Period of time for acceleration from 0 Hz to the maximum frequency (parameter 23).

Value range: 0.1–999.9 s

26 – Deceleration time 1

Standard deceleration time. Period of time for deceleration from the maximum frequency (parameter 23) to 0 Hz.

◊ Value range: 0.1–999.9 s

27 – Acceleration time 2

Alternative acceleration time. Period of time for acceleration from 0 Hz to the maximum frequency (parameter 23). The switchover possibilities are programmed with the parameter **72 – Ramp function selection**.

Value range: 0.1–999.9 s

28 – Deceleration time 2

Alternative deceleration time. Period of time for deceleration from the maximum frequency (parameter 23) to 0 Hz. The switchover possibilities are programmed with the parameter **72** – **Ramp function selection**.

◊ Value range: 0.1–999.9 s

29 – Control mode

This parameter defines the sources for the Start/Stop signal and the setpoint in the two operating modes LOCAL and REMOTE. Switchover between LOCAL and REMOTE is performed via terminal input PS3 if this has been programmed for function x06 with parameter **9B – PS3 input function selection**. Operating mode LOCAL is displayed by LOC on the standard display 1 and display REM is shown in REMOTE mode.

ATTENTION!

If you switch over from LOCAL mode to REMOTE mode (see also parameter **9B – PS3 input function selection**), a Start command applied to the terminals is processed immediately if the motor is started. This may lead to death, injury or damage to equipment and installations.

	LOCAL	MODE	REMOTE	EMODE			
	Setpoint	Start/Stop signal	Setpoint	Start/Stop signal			
x0	Keypad ¹⁾	Keypad ^{2) 6)}	NA	NA			
x1	see NOTE ⁴⁾	Keypad ^{2) 6)}	see NOTE ⁴⁾	Terminals ⁵⁾			
x2	see NOTE ⁴⁾	Keypad ^{2) 6)}	see NOTE ⁴⁾	Keypad ²⁾			
х3	Keypad ¹⁾	Keypad ^{2) 6)}	see NOTE ⁴⁾	Terminals ⁵⁾			
x4	NA	NA	see NOTE ⁴⁾	Terminals			
x5	see NOTE ⁴⁾	Keypad ^{2) 6)}	see NOTE ⁴⁾	SIO (RS-485) ³⁾			
x6	Keypad ¹⁾	Keypad ^{2) 6)}	see NOTE ⁴⁾	SIO (RS-485) ³⁾			
x7	NA	NA	see NOTE ⁴⁾	SIO (RS-485) ³⁾			
0 x	x REV key basically not active (applies only to LOCAL mode)						
1 x	FWD and REV keys a	active (applies only to	LOCAL mode)				

UD 7000 — 1.5-355.0

◊ Value range: see Table

Default Europe: 13 Default USA: 3 (see also parameter EA)

SL / FO / SLV / EC - OE

SL / FO / SLV / EC – OE

SL / FO / SLV / EC - OE

SL / FO / SLV / EC - SC

Default: 3.0 s SL / FO / SLV / EC – OE

Default: 3.0 s

Default: 5.0 s

Default: 5.0 s

NOTES:

1) Key ▲ :	Increases the setpoint.
Key ▼ :	Reduces the setpoint.
Key ENTER:	Failsafe storage of the setpoint.

- 2) Key FWD: Right rotation.
 Key REV: Left rotation (if the REV key is enabled).
 Key STOP: Deceleration or free coasting (output stage disable) of the motor (see parameter 71 Start and Stop options).
- 3) SIO mode is a special form of REMOTE mode. Command FWD ("Start with clockwise rotating field"), REV ("Start with anticlockwise-rotating field") and the STOP command are preset solely via the serial port RS 485 in this mode. Parameter AD Inverter control commands in SIO mode is used for this. On the standard display 1, display "SIO XX" indicates that the inverter receives its control commands from the RS 485 bus and that it has address XX (XX stands for 00 to 31, see parameter A9 Slave address of the inverter for SIO operation). The setpoint source is determined by parameter 31 Setpoint selection (frequency setpoint)).

Parameterisation of the inverter via the serial port RS 485 does not require SIO mode. "SIO mode" means only that the Start-Stop signals are routed from the RS 485 interface in the case of REMOTE mode.

4) The setpoint source is determined with parameter 31 – Setpoint selection (frequency setpoint) and by programming inputs PS1, PS2 and PS3 with parameters 99 to 9B and wiring these inputs according to the explanation below:

With valences $PS1 - 2^0$, $PS2 - 2^1$, $PS3 - 2^2$, inputs PS1-PS3 form a numerical value which is used as the selection parameter for the terminal setpoint. The corresponding bit is set equal to 1 if the input is programmed for function x00 "Selection of a fixed frequency" with the relevant parameter 99 to 9B "Function selection of input PS1/PS2/PS3" and the input has been activated. If one of the two conditions is not met, the bit is set equal to zero. The following setpoint sources (see Table 8.5) are assigned to the possible values of the selection parameter thus generated. If all three bits are equal to zero, only parameter **31 – Setpoint selection (frequency setpoint)** determines the setpoint source.

5) In this mode, Start and Stop commands are preset only with terminals "FWD" and "REV". Parameters 71 – Start and Stop options and 91 – Function of inputs FWD and REV define how these terminals respond precisely. Both parameters must be adapted in order to achieve safe operation of the installation. The keypad's STOP key is programmed as "Emergency-Stop" by default.

6) Jog mode in LOCAL mode:

The set value of fixed frequency 1 may also be used as a jog frequency. For this purpose, the binary inputs R/J and PS3 must be activated, parameter **98 – Run/Jog input function selection** must be programmed for function x00 "Jog mode selected" and LO-CAL mode must be activated with parameter 9B (setting x06). The motor operates at the set fixed frequency 1 in the corresponding direction for as long as key FWD or REV is now pressed.

PS3	PS2	PS1	Frequency setpoint defined by:				
0	0	0	Parameter 31 – Setpoint selection (frequency setpoint) ⁽¹⁾				
0	0	1	Parameter 41 – Fixed frequency 1 ^{(2) (3)}				
0 (4)	1 ⁽⁵⁾	0	Parameter 42 – Fixed frequency 2 ⁽³⁾				
0	1	1	Parameter 43 – Fixed frequency 3 ⁽³⁾				
1	0	0	Parameter 44 – Fixed frequency 4 ⁽³⁾				
	Table 8.5						

04.08.05	Parameter Description	2-45
07_GB_T2	UD 7000 — 1.5–355.0	2-40

HINT!

PS3	PS2	PS1	S1 Frequency setpoint defined by:			
1	0	1	Parameter 45 – Fixed frequency 5 ⁽³⁾			
1	1	0	Parameter 46 – Fixed frequency 6 ⁽³⁾			
1	1 1 Parameter 23 – Maximum frequency					
			Table 8.5			

(1) The frequency setpoint is determined by parameter 31 - Setpoint selection (frequency setpoint)

- (2) The set value of fixed frequency 1 can be used as a jog frequency. For this purpose, the binary inputs R/J and PS3 must be activated, parameter 98 (Selection function input Run/Jog) must be programmed for function "Jog mode selected" (setting x00) and LOCAL mode must be activated with parameter 9B (setting x06). The motor operates at the set fixed frequency 1 in the corresponding direction for as long as key FWD or REV is pressed.
- (3) In the case of the fixed frequencies, parameters 41–46, only the setpoint which is not higher than the maximum frequency acts. In the case of higher values, the maximum frequency is used.
- (4) "0" means: the setting of the data code for parameters 99–9B is greater than 0 or active level is not applied to the input.
- (5) "1" means: selection of a fixed frequency (data code "0" in parameters 99–9B) and input PS1–PS3 is assigned active level.

2A – Test mode

SL / FO / SLV / EC

This parameter determines what motor-specific data must be determined automatically by the inverter. This relates to parameters which are not specified on the motor rating plate.

Cables and motor are electrically live (risk of lethal injury) when Test mode is run. The motor turns in the case of certain test sequences.

Follow all commissioning steps before starting Test mode. It is particularly important that correct motor data (parameter group 1) has been entered.

After successful execution of the relevant measurement, parameters are computed whose values can be determined from the measurement results, e.g. the current controller parameters from the measured resistances and inductances.

A setting for 101 for the sensorless inverter (application 0), 104 for <u>SLV</u>^{\odot} and 109 or 119 for the EC/FO variant are recommended in order to achieve as precise coordination as possible between motor and inverter. At this point, it is also possible to determined what test is to be performed how frequently. For example, a test can be defined as "to be performed successfully once", i.e. the measurements are normally conducted only one single time (with the first Start command). Thereafter, the parameter is reset automatically to the value zero. However, if an error occurs during the test (i.e. measurement unsuccessful), the test request remains pending for the next Start command. The factory default setting 101 starts a non-recurrent measurement of the stator resistance after the first Start command. The following functions may be selected:

	Notes	Description
0		No parameter determination
1		Measurement of the stator resistance after the first start command following power-on
2		Measurement of the stator resistance after every start command
3	(1)	Measurement of the stator resistance after the first start command following power-on and after execution of each stop command
4		Measurement of the stator resistance and of the leakage inductance after the first start command following power-on (mainly for <u>SLV</u> ^{\odot} mode)
5	(2) (3)	Determination of the installation offset and the direction of rotation of the position encoder after the first start command following power-on (only for applications with rotational speed feedback)
6	(2) (3)	Measurement of the stator resistance and determination of the installation offset and the direction of rotation of the position encoder after the first start command following power-on

-46	Parameter Description	04.08.05
-40	UD 7000 — 1.5–355.0	07_GB_T2

ATTENTION!

	Notes	Description
9	(2) (3)	Measurement of the stator resistance and of the leakage inductance, deter- mination of the installation offset and of the direction of rotation of the posi- tion encoder after the first start command following power-on
10	(2) (4)	Search for the Zero pulse when using an encoder in Master Slave
11 14 15 16 19	(4) (4) (2) (3) (4) (2) (3) (4) (2) (3) (4)	Same as 1, 4, 5, 6 and 9, but with a search for the Zero pulse when using an encoder
114 115 116	(2) (3) (2) (3) (2) (3) (2) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4)	Like 1, 4, 5, 6, 9 (or 11, 14, 15, 16, 19) but as a singular performance , i.e. that the parameter is automatically set to 0 after the selected test has been performed completely and without error message or warning . After the next starting instruction and also after a software re-start ⁽⁵⁾ , there will be no further test run. Starting the test run with a key combination: A Test mode can be started only in REMOTE-Mode and in the standard display 1 with keyboard short-cut SHIFT + ENTER (press SHIFT key first and then key ENTER) and a set parameter value above 100 in the case of parameter 2A – Test mode . You are then prompted to indicate whether Test mode is to be started, and this prompt can be confirmed by pressing key FWD or aborted with STOP. If you abort the prompt, you will see a warning message indicating that a measurement has not been conducted, the warning can be acknowledged with key PROG, SHIFT or ENTER. When Test mode is started, you will see display "LOC Test". The drive is de-energised again and is stopped after completion of the measurements. The following remark is valid no matter whether the tests have been started through starting instruction or key combination: In case of errors or the user interrupting the test, the entered value is preserved until the autotuning function has been performed completely or until the user changes the value.

ATTENTION!

(1) As the stator resistance is measured after the Stop command is issued in test mode 3, the drive is not immediately de-energized after braking! The inverter output stages are blocked only at the end of the resistance measurement.

(2) The motor must be able to turn freely during this test run.

(3) If application 10, 11 or 12 is selected (EC motor), the resolver's mounting offset relative to the rotor zero displacement angle is measured. A DC voltage vector which pulls the rotor magnet wheel to its zero position is connected in this case. This angle offset is important as regards commutation control of the output stages.

- (4) The zero pulse is sought with the frequency entered under parameter D2 Zero pulse search frequency.
- (5) The inverter software is re-started when the inverter is switched on and when the software has been reset with the aid of parameter 2D Software reset.
- ♦ Value range: see Table

Default: 101

A test run should always be conducted if

- the drive is being placed into operation for the first time.
- a parameter reset has been performed (parameter EA).
- a different motor is connected.
- the application is modified (parameter 2C).
- something has changed on the feedback system (new installation or exchange or installation of an encoder with a different number of lines or a different resolver etc.).
- a high rotational speed accuracy is required in application <u>SLV</u>[©]. Heating of the motor will automatically result in a change in the winding resistances. This influences the drive qualities. If the application allows, you should check whether Test mode 2 can be integrated practically in the application (resistance measurement after each Start command).

04.08.05	Parameter Description	2-47
07_GB_T2	UD 7000 — 1.5–355.0	2-47

HINT!

The Autotuning function fulfils its purpose only if the selected test has been run through once fully with no error message or warning. If an error message or warning is displayed during the measurement, Test mode must be repeated by restarting the unit. If an error message occurs again, the motor data in group 1 and correct cabling of the installation must be checked. Difficulties may also arise if the nominal power values of inverter and motor are far apart.

The measured and computed parameters are stored permanently. Therefore, one-time measurements of the motor parameters, of the installation offset and of the angle sensor's direction of rotation are adequate in most cases. However, these values should be determined again following changes in installation of the motor or encoder or the wiring.

Solutions to the problem:

While carrying-out a test-run, none of the binary inputs R/J, PS1, PS2, PS3, may be driven. The data established by Autotuning may differ from the optimum motor data if

- nominal motor and inverter power values differ greatly.
- the motor data in Group 1 do not agree with the actual data of the connected motor (e.g. motor data for a star connection is input, but the motor is operated with a delta connection (or vice versa)).
- test operation does not take place at the PWM frequency (parameter 79) used subsequently.
- the nominal data of the inverter means that the inverter is not capable of providing the current required for operation of the motor at the nominal working point or of providing the nominal motor voltage (e.g. a motor with a nominal voltage of 600 V is operated connected to the inverter in a 380 V power system).

Stator resistance measurement

The stator resistance is measured by application of a fixed voltage vector for several seconds. In doing so, the motor is 0 Hz.

Newly computed parameters:

Parameter	F3 – Stator resistance R1
Parameter	F8 – Current controller gain
Parameter	F9 – Specific current controller reset time

Leakage inductance measurement

The leakage inductance is measured by impressing an alternating field with the rated frequency of the motor. In doing so, the motor is 0 Hz.

Newly computed parameters:

Parameter	F4 – Rotor resistance R2
Parameter	F5 – Leakage reactance X σ
Parameter	F7 – Main reactance X _h
Parameter	F8 – Current controller gain
Parameter	F9 – Specific current controller reset time

Determining the installation offset and the direction of rotation of the angle sensor

For operation with a encoder generator or angle sensor, the directions of rotation of the motor and angle sensor read in by the inverter must agree. The parameter **BD** – **Angle sensor direction of rotation** serves to define this.

For the control of brushless servo motors, the rotor displacement angle of the motor must be known to the inverter. To do this, the installation offset of the encoder (parameter BC) is defined. This specifies the value measured by the angle sensor for the rotor displacement angle 0°.

2-48	Parameter Description	04.08.05
2-40	UD 7000 — 1.5–355.0	07_GB_T2

Both items of information are determined in one testing step. In doing so, the motor is rotated by a total of 300°. The determined installation offset can be ignored if this testing step is used to determine the direction of rotation of the angle sensor for an induction motor.

If an encoder is used as an angle or rotor displacement angle sensor, the encoder's Zero pulse should be sought before determining the installation offset in order to arrive at a reproducible value.

To carry out this testing step, the motor must be capable decoupled from the load. Discrepancies may arise if this is not the case. In this case, the correct value must be determined elsewhere and must be entered in the parameter **BC – Angle sensor installation offset**.

Newly computed parameters:

ParameterBD – Angle sensor direction of rotationParameterBC – Angle sensor installation offset

Zero pulse search when using an encoder as the angle sensor

When using an encoder as the rotor position sensor for a brushless servo motor or as a general angle sensor for operation of the inverter in position control mode (e.g. electronic gearbox), the Zero pulse can be used to reproducibly define an absolute starting position.

During the search, the motor is rotated at a programmable frequency (parameter **D2 – Zero pulse search frequency**) until the evaluation electronics registers the Zero pulse. The position of the front edge of the Zero pulse is determined with the parameter **D3 – Zero angle**.

Newly computed parameters:

None.

Application Examples

Application: Inverter

Test mode 4, with which the motor parameters are measured, is used for start up. For further operation, the parameter is set to 0 (no parameter determination) or 1 (measurement of the stator resistance as a highly temperature-dependent value after every power-on).

Application: EC motor – speed control with resolver

Test mode 9, with which the motor parameters and the installation offset are determined, is used for start up. The parameters of the current controller are calculated on the basis of the measured motor parameters. For further operation, the parameter is set to 0 (no parameter determination).

Application: EC motor – speed control with encoder

Test mode 19, with which the motor parameters and the installation offset are determined, is used for start up. The parameters of the current controller are calculated on the basis of the measured motor parameters. Before determination of the installation offset, the Zero pulse of the encoder is sought in order to have an absolute Zero point. For further operation, the parameter is set to 10 (Zero pulse search). This is necessary because the absolute Zero point to which the stored installation offset refers must be sought again after every poweron.

04.08.05	Parameter Description	2 40
07_GB_T2	UD 7000 — 1.5–355.0	2-49

Application: FO (induction motor – electronic gearbox with encoder, master setpoint specified through encoder)

Test mode 19, with which the motor parameters, the installation offset and the direction of rotation of the encoder are determined, is used for start up. The parameters of the current controller are calculated on the basis of the measured motor parameters. The installation offset is irrelevant to the induction motor. As the encoder's direction of rotation is determined simultaneously, however, this function should be executed. Before determination of the installation offset, the encoder's Zero pulse is sought in order to have an absolute Zero point.

The setpoint for the "Electronic gearbox" function is specified through an encoder channel. For this channel, the Zero pulse must also be sought in order to determine the Zero point of the setpoint reference system. To do this, use the "Zero pulse search, master setpoint" function, which is started by activating a binary input programmed to this function (parameters 98–9B). After activation, the master encoder must be rotated by at least one revolution so as to find the Zero point.

For further operation, the parameter is set to 10 (Zero pulse search). This is necessary because the absolute Zero point to which the stored installation offset refers has to be sought anew after every power-on. The same applies to the master setpoint Zero pulse. This also has to be sought anew after every power-on.

Application: <u>SLV</u>^{\odot} (induction motor with sensorless control)

Test mode 4, with which the motor parameters are measured and on the basis of which the controller parameters and other important variables for the <u>SLV</u>^{\bigcirc} model are calculated, is used for start up. For further operation, the parameter should be set to 0 (no parameter determination), 1 (measurement of the stator resistance after every power-on) or 2 (measurement of the stator resistance after every start command if the inverter is seldom isolated from the line).

2C – Application

SL / FO / SLV / EC

You are prompted for this parameter once after power-on. A change in the parameter makes no changes to the present state of the inverter. The parameter must be set to the corresponding value and the unit must then be switched off and back on again or a Software Reset (parameter 2D) must be performed in order to select a different application.

If, when the prompt for this parameter occurs, it is determined that the option board required for this application is not fitted, error message 11 "Option" is displayed. This represents a fatal error which can be remedied in two possible ways:

- 1. By switching off the unit, by installing the necessary option board and by connecting the unit again.
- Acknowledge the error message with key PROG, SHIFT or ENTER. Select an application which does not require an option card. Switch the inverter off and back on again or perform a Software Reset (parameter 2D).

The UD 7000 features three equivalent parameter sets. The parameter sets may contain diverse applications. If, in the event of a parameter set change-over, the unit detects that the new set contains a different application, the inverter is restarted directly after the set change-over in order to adapt the inverter environment see "Note 1 – Changing the customer parameter sets:", Page 2-98.

HINT!

The UD 7000 features a wide variety of special applications offering solutions to special problems of drive engineering. Our Sales Division will be more than willing to inform you of applications available for the UD 7000. Never activate an application for which you do not have an application description. All functions described in this Manual apply only to the applications listed in this Manual.

2-50	Parameter Description	04.08.05
2-30	UD 7000 — 1.5–355.0	07_GB_T2

VALUE	APPLICATION	REQUIRED OPTION
0	Inverter	None
2	Brushless servo inverter running ¹⁾	None
10	EC motor – speed control	Resolver or encoder evaluation
11	EC motor – torque control ²⁾	Resolver or encoder evaluation
12	EC motor – electronic gearbox ³⁾	Encoder evaluation
20	Induction motor – speed control	Resolver or encoder evaluation
21	Induction motor – torque control ²⁾	Resolver or encoder evaluation
22	Induction motor – electronic gearbox $^{3)}$	Encoder evaluation
50	Induction motor – sensorless speed control <u>SLV^{$@ 4)$}</u>	None
51	Induction motor – sensorless torque control <u>SLV^{$@ 2, 5)$}</u>	None
52	Induction motor – sensorless <u>SLV</u> ^{$^{\odot}$} speed control II ⁶⁾	None
53	Induction motor – \underline{SLV}^{\odot} in the field-attenuation range ⁶⁾	None
90	Velocity control 7)	None

♦ Value range: see Table

Default: 0

NOTES:

- 1) The following setpoint source must be programmed for the "Brushless servo inverter running" application (parameter 31 "9 LIM master setpoint").
- The setpoint is specified through the VIN or CIN terminals. The parameter 31 Setpoint selection (frequency setpoint) must be programmed accordingly. This mode serves to implement applications in which purely torque-controlled operation is required (e.g. tension controls).

ATTENTION!

The drive generates a specified torque independently of the speed, i.e. without load the motor accelerates up to the maximum frequency defined in parameter 23.

- 3) One of the following setpoint sources must be programmed (parameter 31) for the "Electronic gearbox" application:
 "8 Option encoder master setpoint channel 2" (the "Two-channel encoder evaluation" option is required for this purpose) or
 - "9 LIM master setpoint".
- 4) Sensorless speed control on the basis of the <u>SLV</u>² method functions with standard motors within the frequency band 1 Hz through to twice the nominal motor frequency (parameter 12). The speed controller must be re-optimized if operating in the field-attenuation range (frequencies above the break-point frequency (parameter 21)).
- 5) The sensorless torque control according to the <u>SLV</u>² method functions reliably above the slip frequency. To exclude problems in the range around 0 Hz, the minimum frequency (parameter 24) must be set to a value of around 3 Hz.
- 6) These applications are not described in further detail in this Manual. Special application descriptions are available for these applications.
- 7) Any setpoint (parameter 31) with the exception of setting "7" or "9" may be selected for application "Velocity control". The control uses the LIM input which must be scaled using parameter 36 Pulse number of LIM input.

04.08.05	Parameter Description	2 51
07_GB_T2	UD 7000 — 1.5–355.0	2-51

ATTENTION!

Applications

0 (Inverter)

FACTORY SETTING: the connected motor is controlled through a V/Hz ratio. Induction motors (e.g. standard three-phase motors) can be connected.

2 (Brushless servo inverter running)

The following setpoint source must be programmed for the "Brushless servo inverter running" application: parameter **31 – Setpoint selection (frequency setpoint)** = 9 (LIM master setpoint).

10 (EC motor – speed control)

Speed-controlled operation of an EC machine (brushless servo motor). Commutation and speed registering of the machine are realised by way of a resolver or incremental encoder mounted on the motor shaft. The machine runs the specified speed regardless of the load.

11 (EC motor – torque control)

Torque-controlled operation of an EC machine. The machine is commutated by way of a resolver or increment encoder mounted on the motor shaft. A rotational speed-controlled deceleration is started when the Stop command is issued.

Dependent on the speed of rotation, the drive generates a given torque, i.e. the motor accelerates under no load under the maximum frequency defined in parameter 23.

12 (EC motor – electronic gearbox)

Angle-synchronous operation of the EC motor. The motor connected to the inverter follows a two-phase reference signal angle-synchronously. The reference signal and the motor feedback signal are connected to the resolver option card. Please refer to the description of the resolver card for detailed information.

The illustration below shows a schematic representation of application "Electronic transmission":

0 50	Parameter Description	04.08.05
2-52	UD 7000 — 1.5–355.0	07_GB_T2

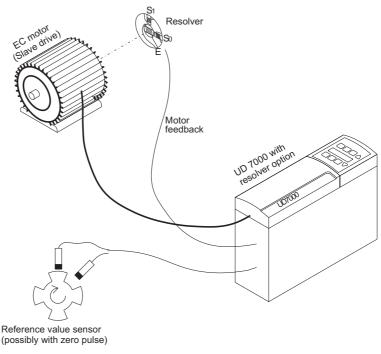


Figure 8.1

The motor follows the incoming control pulses phase-synchronously. Prior to commissioning, please follow the explanations for parameter **2A** – **Test mode**.

For Master-Slave mode using a resolver or encoder option card, it is important that the setpoint source 8 is selected. Please check the setting in parameter **31 – Setpoint selection** (frequency setpoint). The rotational speed ratio between reference sensor and Slave drive is assigned on the basis of parameter **36 – Pulse number of LIM input**. The assignment of the direction of rotation is made with parameter **37 – Direction of rotation, master** setpoint.

There are two types of electronic transmission:

1. Angle-synchronous operation with any angle setting of the Slave and Master drive.

After the drive has been switched on and the Start command has been issued, the Slave drive follows the Master drive starting from its current position. It is not necessary to evaluate a zero pulse.

2. Angle-synchronous operation with fixed angular position between Slave and Master drive.

After the drive has been switched on, the zero pulse of the reference sensor must be sought before the Start command is issued (drive in STOP state). For this purpose, one of the PS inputs or the Run/Jog input is programmed for function 9 or 109 (Zero pulse search Master setpoint). If the function is selected, the reference sensor must be turned beyond the zero pulse. As of this point, the angle assignment between Master and Slave drive is always retained. This means that the zero pulses of Master and Slave drive co-incide.

The angle between the zero pulses can be adjusted with parameter **D3 – Zero angle**. Moreover, this angle may be varied via two PS inputs (PS1 and PS2, setting 13).

20 (Induction motor - speed control)

Speed-controlled operation of an induction machine. Field-oriented control and speed registering of the machine are realised by way of a resolver or an incremental encoder mounted on the motor shaft. The machine runs the specified speed independently of the load.

04.08.05	Parameter Description	2 52
07_GB_T2	UD 7000 — 1.5–355.0	2-53

ATTENTION!

21 (Induction motor - torque control)

Torque-controlled operation of an induction machine. Field-oriented control of the machine is realised by way of a resolver or an incremental encoder mounted on the motor shaft. A rotational speed-controlled deceleration is started when the Stop command is issued if it has not been deactivated in parameter 71.

Dependent on the speed of rotation, the drive generates a given torque, i.e. the motor accelerates under no load under the maximum frequency defined in parameter 23.

22 (Induction motor – electronic gearbox)

Angle-synchronous operation of the field-orientated-controlled asynchronous motor. The motor connected to the inverter follows a two-phase reference signal angle-synchronously. The reference signal and the motor feedback signal are connected to the encoder option card. Please refer to the description of the encoder card for detailed information.

The illustration below shows a schematic representation of application "Electronic transmission":

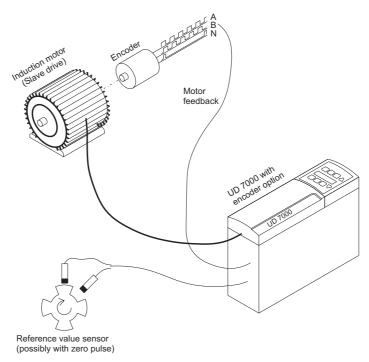


Figure 8.2

The motor follows the incoming control pulses phase-synchronously. Prior to commissioning, please follow the explanations for parameter **2A** – **Test mode**.

For Master-Slave mode using a resolver or encoder option card, it is important that the setpoint source 8 is selected. Please check the setting in parameter **31 – Setpoint selection** (frequency setpoint). The rotational speed ratio between reference sensor and Slave drive is assigned on the basis of parameter **36 – Pulse number of LIM input**. The assignment of the direction of rotation is made with parameter **37 – Direction of rotation, master** setpoint.

There are two types of electronic transmission:

1. Angle-synchronous operation with any angle setting of the Slave and Master drive.

After the drive has been switched on and the Start command has been issued, the Slave drive follows the Master drive starting from its current position. It is not necessary to evaluate a zero pulse.

0 54	Parameter Description	04.08.05
2-54	UD 7000 — 1.5–355.0	07_GB_T2

2. Angle-synchronous operation with fixed angular position between Slave and Master drive.

In the case of commissioning after connection of the line power supply and the Slave drive, ensure that a test mode which includes an encoder zero pulse search is used. In parameter 2A - Test mode, this corresponds to settings 10, 15, 16 and 19. When searching for the zero pulse, the drive is rotated with the frequency entered in parameter D2 - Zero pulse search frequency.

After the drive has been switched on, the zero pulse of the reference sensor must be sought before the Start command is issued (drive in STOP state). For this purpose, one of the PS inputs or the Run/Jog input is programmed for function 9 or 109 (Zero pulse search Master setpoint). If the function is selected, the reference sensor must be turned beyond the zero pulse. As of this point, the angle assignment between Master and Slave drive is always retained. This means that the zero pulses of Master and Slave drive co-incide.

The angle between two zero pulses (Master/Slave drive) can be adjusted using parameter **D3 – Zero angle**. Moreover, this angle may be varied via two PS inputs (PS1 and PS2, setting 13).

50 (Induction motor – sensorless speed control <u>SLV</u>^{\mathcal{D}})

Speed-controlled operation of an induction machine. Field-oriented control and speed registering of the machine are realised without sensors by way of the <u>SLV</u>^{\bigcirc} motor model. The machine runs the specified speed independently of the load.

51 (Induction motor – sensorless torque control <u> SLV^{\odot} </u>)

Torque-controlled operation of an induction machine. Field-oriented control of the machine is realised without sensors by way of the \underline{SLV}^{\odot} motor model. A rotational speed-controlled deceleration is started when the Stop command is issued.

ATTENTION!

Dependent on the speed of rotation, the drive generates a given torque, i.e. the motor accelerates under no load under the maximum frequency defined in parameter 23.

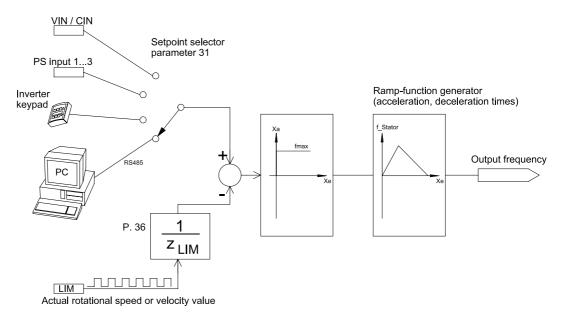
52 (Induction motor – sensorless <u>SLV</u>^{\odot} speed control II)

Rotational speed-control <u>SLV</u>^{\odot} mode as with application 50 but as "single-controller solution" (adjustment is performed via parameters F8 and F9 of the current controller). Good drive characteristics in the range of very low rotational speeds and easy commissioning (since only one controller needs to be set) are the advantages over application 50. The controller structure is shown in Section 6.9.1, "Signal Flow Diagrams".

This application is not described in greater detail in this Manual. Special application descriptions are available for this application.

53 (Induction motor – \underline{SLV}^{\odot} in the field-attenuation range)

Application 53 supplements the <u>SLV</u>^{\odot} variants with a solution for field-attenuation mode. If frequencies up to above three times the nominal motor frequency are to be used, this application offers advantages over application 50 owing to optimum utilisation of the voltage in the field-attenuation range. This means that the drive can be accelerated through to the field-attenuation range at the torque limit. As with application 52, this is a "single-controller solution".


This application is not described in greater detail in this Manual. Special application descriptions are available for this application.

04.08.05	Parameter Description	2 55
07_GB_T2	UD 7000 — 1.5–355.0	2-55

90 (Velocity control)

This application implements simple rotational speed feedback. This means that a rotational speed or velocity-proportional frequency signal is connected as the actual value to the inverter LIM input. Any setpoint (apart from the LIM setpoints) which can be selected via parameter **31 – Setpoint selection (frequency setpoint)** can be processed as the setpoint. In this application, the motor is operated in V/f-controlled mode (in accordance with application 0: Inverter).

The controller structure is shown in the illustration below:

Firstly, you must enter the number of pulses arriving at the LIM input, in parameter **36** – **Pulse number of LIM input**. Input frequencies up to maximum 100 kHz are processed.

If the actual frequency is unknown, it is frequently helpful to initially place the drive into operation with parameter 2C - Application = 0, to preset a frequency setpoint and then measure the actual frequency. On the basis of these measured values, it is possible to make an initial setting of parameter 35. Precise adjustment is then performed in controlled operation (application = 90).

The controller:

The rotational speed setpoint is compared with the actual value at the summing junction. Depending on the sign of the result, either the maximum frequency fmax or 0 Hz is preset for the setpoint generator. The ramp-function generator now changes the rotational speed until the frequency setpoint is equal to the actual frequency. The controller is optimized simply via the ramp dataset (acceleration and deceleration times in group 2). The times must be changed until the drive operates free of oscillation. In general, the same value should be entered for the acceleration and deceleration times.

2D – Software reset

SL/FO/SLV/EC

Certain parameter settings (for example, activation of a different application with parameter 2C) require a software restart. This is achieved by switching the supply voltage off and back on again or by programming this parameter to value 1. When this value is saved, the software restarts once and the parameter once again has the value 0.

0	No action
1	Software is rebooted

F	Parameter Description	04.08.05
ι	JD 7000 — 1.5–355.0	07_GB_T2

HINT!

ATTENTION!

NOTE:

Normally, all parameter changes are processed by the inverter immediately they are entered. If a restart of the software is required in order for the change to take effect, this is expressly stated in the parameter description.

Value range: see Table

2E – Minimum frequency voltage

A point on the characteristic curve of the analogue setpoint specification is defined using this parameter. This parameter specifies the voltage at which the inverter runs at minimum frequency (parameter 24).

NOTES:

- 1) Starting from software version A20.02 appears with parameter 4E in the display "U-fmin VIN/CIN".
- 2) The parameter is only effective if the parameter **31 Setpoint selection (frequency setpoint)** is set to 0 or 1.
- If parameter 31 is set to 0, positive and negative values are allowed for the parameter 2E – Minimum frequency voltage, however, only positive values are permissible when setting the parameter 31 to 1.
- 4) If parameter 2E is set to a value ranging from 0.01 volts to 10.00 volts and the setpoint voltage exceeds this value, the warning 27 "Set disconn" appears.
- ◊ Value range: -10.00 V...+10.00 V

2F – Maximum frequency voltage

The other point on the characteristic curve of the analogue setpoint specification is also defined using this parameter. This parameter specifies the voltage at which the inverter runs at maximum frequency (parameter 23).

NOTES:

- 1) Starting from software version A20.02 appears with parameter 4F in the display "U-fmax VIN/CIN".
- The parameter is only effective if the parameter 31 Setpoint selection (frequency setpoint) is set to 0 or 1.
- If parameter 31 is set to 0, positive and negative values are allowed for the parameter 2F – Maximum frequency voltage; however, only positive values are permissible when setting the parameter 31 to 1.
- ♦ Value range: -10.00 V...+10.00 V

8.3 Group 3 – Setpoint Selection

31 – Setpoint selection (frequency setpoint)

A number of possibilities is available for specifying the rotation frequency. Adapt to the existing signal source by means of this parameter.

0	VIN 0–10 V or CIN 0–20 mA ¹⁾
1	VIN ±0–10 V or CIN ±0–20 mA ²⁾
2	Reserved N/A
3	Reserved N/A

04.08.05	Parameter Description	2 57
07_GB_T2	UD 7000 — 1.5–355.0	2-57

Default: 0

SL/FO/SLV/EC

Default: 0.00 V

Default: 0.00 V

SL/FO/SLV/EC-SC

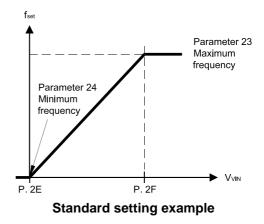
SL / FO / SLV / EC

4	
4	Reserved N/A
5	Reserved N/A
6	Keypad. Setpoint is entered via the keypad, FWD, REV and STOP control via the terminals. If the STOP key is pressed, error 0 (Emergency-Stop) is triggered by default ⁸⁾
7	LIM frequency input 100 kHz. Scaling with parameter 35 – Calibration digital LIM input with factor D_{LIM} ⁹⁾
8	Master-Slave mode (setting 12 and 22 in parameter 2C – Application). This application is possible only in combination with the resolver or encoder option cards
9	LIM master setpoint $\frac{f_{LIM}}{Z_{LIM}}$; Z_{LIM} = parameter 36 ⁹⁾
10	Reserved N/A
11	External frequency setpoint 1 (parameter 3A)
12	External frequency setpoint 2 (parameter 3B)
13	Fixed frequency 1 (parameter 41) ^{3) 4) 7)}
14	Fixed frequency 2 (parameter 42) ^{3) 7)}
15	Fixed frequency 3 (parameter 43) ^{3) 7)}
16	Fixed frequency 4 (parameter 44) ^{3) 7)}
17	Fixed frequency 5 (parameter 45) ^{3) 7)}
18	Fixed frequency 6 (parameter 46) ^{3) 7)}
19	Maximum frequency (parameter 23)
20	LIM master setpoint $\frac{f_{LIM}}{Z_{LIM}} \times K$; Z_{LIM} = parameter 36 The frequency setpoint measured at the LIM input is also weighted with factor K which is dependent on the voltage at the analogue input V _{in} and on parameter 34 ⁵)
21	LIM master setpoint $\frac{f_{LIM}}{Z_{LIM}} \times K$; Z_{LIM} = parameter 36 The frequency setpoint measured at the LIM input is also weighted with factor K which is dependent on the voltage at the analogue input V _{in} and on parameter 34 ⁶)

◊ Value range: see Table

Default: 0

NOTES:

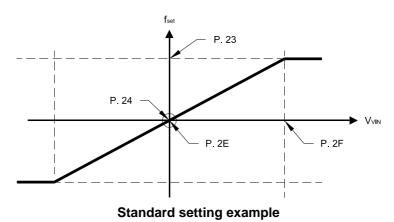

The value of the analogue input voltage is specified using parameter 23 – Maximum frequency, 24 – Minimum frequency, 2E – Minimum frequency voltage and 2F – Maximum frequency voltage.

The standard settings of these four parameters are such that an input voltage ranging from 0-10 volts gives a setpoint specification of 0-50 Hz.

By modifying the parameter, a different setpoint specification can be attained where the voltage defined in parameter **2E** – **Minimum frequency voltage** affects the minimum frequency (parameter 24) and the voltage set in parameter **2F** – **Maximum frequency voltage** affects the maximum frequency (parameter 23). Straight-line interpolation occurs between these two points.

2 50	Parameter Description	04.08.05
2-58	UD 7000 — 1.5–355.0	07_GB_T2

Any values within the range ± 10 volts can be assigned to parameters 2E and 2F, which results in an ascending or descending characteristic curve. The resultant setpoint frequency is always positive. The direction of rotation can be changed by FWD/REV.



The value of the analogue input voltage is specified using parameter 23 – Maximum frequency, 24 – Minimum frequency, 2E – Minimum frequency voltage and 2F – Maximum frequency voltage.

The standard settings of these four parameters are such that an input voltage of ± 10 volts gives a setpoint specification of ± 50 Hz.

By modifying the parameter, a different setpoint specification can be attained, where the voltage defined in parameter **2E** – **Minimum frequency voltage** affects the minimum frequency (parameter 24) and the voltage set in parameter **2F** – **Maximum frequency voltage** affects the maximum frequency (parameter 23). Straight-line interpolation occurs between these two points.

The parameters 2E and 2F have to be assigned with any values ranging from 0...+10 Volt so that an ascending or descending characteristic curve is obtained. The characteristic curve is reflected on the Y-axis such that the resultant setpoint frequency can assume both signs. Furthermore, the direction of rotation can be changed with FWD/REV.

3) Fixed frequencies 1–6 (frequency setpoint for selection via the binary inputs). The binary inputs required (PS1/PS2/PS3) must be programmed for function "Selection of a fixed

inputs required (PS1/PS2/PS3) must be programmed for function "Selection of a fixed frequency" (setting x00) with parameters 99, 9A and 9B and the selected control mode (parameter 29) must use the setpoint from the terminals in the current operating mode (LOCAL/REMOTE).

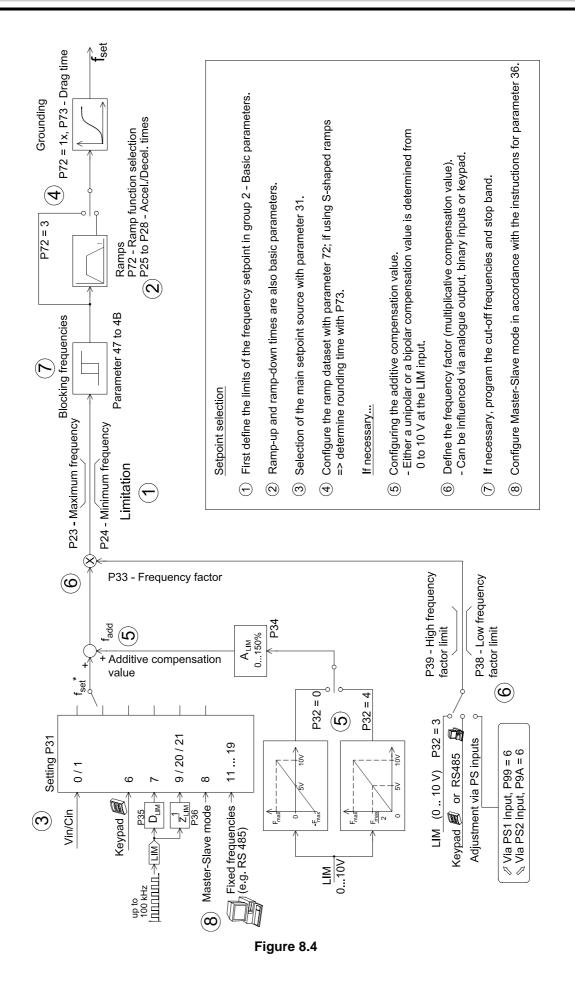
04.08.05	Parameter Description	2 50
07_GB_T2	UD 7000 — 1.5–355.0	2-09

Apart from direct selection of a fixed frequency as a setpoint with values 13 to 18, it is also possible to determine the fixed frequencies (regardless of the value of parameter 31) and the setpoint with the aid of the binary inputs. Please refer to the description of the fixed frequencies (parameters 41 to 46) for details of this.

- 4) Fixed frequency 1 (parameter 41) is used as a jog frequency if the terminal input R/J has been programmed for function "Jog mode selected" (setting x00) with parameter 98 and the binary terminal input PS3 has been set to setting x06 (activation LOCAL mode) with parameter 9B PS3 input function selection. Both binary inputs must be activated (High resp. Low signal). This switches over to LOCAL mode. Pressing key FWD or REV key on the keypad causes the motor to operate with the fixed frequency determined by parameter 41 for as long as the keys are pressed (acceleration and deceleration on the basis of the set ramps). The STOP key has no function.
- 5) The frequency setpoint measured at the LIM input is weighted with factor K. Factor K is as follows in the following cases:

 $\begin{array}{l} \text{VIN} = 0 \text{ Volt} \Rightarrow \text{K} = (100\% \text{ minus parameter 34}) \\ \text{VIN} = 5 \text{ Volt} \Rightarrow \text{K} = 100\% \\ \text{VIN} = 10 \text{ Volt} \Rightarrow \text{K} = (100\% \text{ plus parameter 34}) \end{array}$

6) The frequency setpoint measured at the LIM input is weighted with factor K. Factor K is as follows in the following cases:


 $\begin{array}{l} \text{VIN} = 0 \text{ Volt} \Rightarrow \text{K} = (100\% \text{ plus parameter 34}) \\ \text{VIN} = 5 \text{ Volt} \Rightarrow \text{K} = 100\% \\ \text{VIN} = 10 \text{ Volt} \Rightarrow \text{K} = (100\% \text{ minus parameter 34}) \end{array}$

- 7) In the case of the fixed frequencies, parameters 41–46, only the setpoint which is not higher than the maximum frequency acts. In the case of higher values, the maximum frequency is used.
- 8) This selection offers the option of also entering the setpoint via the keypad in REMOTE mode. The Start/Stop commands are supplied by the terminals (binary inputs FWD and REV) or by the serial port. Key STOP is configured by default as EMERGENCY-STOP in Remote mode (see parameter 71).
- 9) Input levels:

Low \rightarrow Voltage at LIM input less than 5 VDC. High \rightarrow Voltage at LIM input greater than 5 VDC. Maximum permitted voltage = 30 VDC. Maximum frequency = 100 kHz.

The illustration below clearly shows the procedure when setting parameter 31:

2 60	Parameter Description	04.08.05
2-60	UD 7000 — 1.5–355.0	07_GB_T2

04.08.05	Parameter Description	2-61
07_GB_T2	UD 7000 — 1.5–355.0	2-01

32 - Function of the LIM input

SL/FO/SLV/EC-SC

By default, the control input LIM serves to set a torque limit (setting 1). It can also be programmed as an input for a digital frequency setpoint or as a setpoint compensation input.

0	Frequency setpoint compensation by additive compensation value. LIM input is configured as analogue output 0–10 V (with the zero point at 5 V). $^{1)}$
1	0–10 V torque limit (10 V = parameter 55). $^{2)}$
2	Frequency setpoint compensation by multiplicative compensation value. LIM input is configured as analogue output 0–10 V, with the zero point at 0 V. $^{3)}$
3	Digital frequency setpoint (is set automatically if selection parameter 31 = 7, 9, 10, 20, 21).
4	Frequency setpoint compensation by additive compensation value. LIM input is configured as analogue output 0–10 V (with the zero point at 0 V). $^{4)}$
5	Reserved (is set automatically by special applications).

♦ Value range: see Table

NOTES:

 Frequency setpoint compensation by additive compensation value. The LIM input is configured as analogue input 0–10 V (with the zero point at 5 V). Adjustment is performed with parameter 34 – Scaling factor A_{LIM} for analogue LIM input:

$$f_{add} = F_{max} \times A_{LIM} \times \left(\frac{2 \times V_{LIM}}{10 \text{ V}} - 1\right)$$

This allows positive and negative setpoint compensations to be implemented:

There is a compensation value for $V_{LIM} = 0 V f_{add} = -F_{max} \times A_{LIM}$;

by contrast, 10 V input voltage at input LIM (V_{LIM} = 10 V) results in the positive maximum compensation value $+F_{max} \times A_{LIM}$.

NOTE: explanation of symbols in Table 8.6.

The voltage V_{LIM} (0 to 10 V) applied to analogue input LIM is used to preset the torque limit m_{limit} in percent of the nominal motor torque. Scaling is performed by parameter 55 – Torque factor LIM input. If a voltage of 10 V is applied to the LIM input, the torque limit m_{limit} corresponds to the torque factor MF (parameter 55).

$$m_{limit} = MF \times \frac{V_{LIM}}{10 V}$$

3) Frequency setpoint compensation by multiplicative compensation value. LIM input is configured as analogue input 0–10 V with zero point at 0 V.

The voltage V_{LIM} (0–10 V) applied to the analogue input LIM is used to preset parameter **33 – Frequency factor** (this parameter defines a factor in percent by which any frequency setpoint is multiplied). Parameters **38 – Low frequency factor limit** (GU in [%]) and **39 – High frequency factor limit** (GO in [%]) are included in the calculation. The resultant frequency factor is calculated as follows:

 $\label{eq:Frequency factor [%]} \text{Frequency factor [\%]} \, = \, \frac{V_{LIM} \times (G_O - G_U)}{10 \text{ V}} + G_U$

The current frequency factor can be read under parameter E3. If this function is programmed, the frequency factor cannot be changed manually via parameter **33 – Frequency factor**.

2-62	Parameter Description	04.08.05
2-02	UD 7000 — 1.5–355.0	07_GB_T2

Default: 1

4) Frequency setpoint compensation by additive compensation value. LIM input is configured as analogue input 0–10 V (with the zero point at 0 V):

$$f_{add} = F_{max} \times A_{LIM} \times \frac{V_{LIM}}{10 V}$$

This allows only positive setpoint compensations (frequency setpoint increases) to be implemented:

A compensation value $f_{add} = 0$ Hz results for $V_{LIM} = 0$ V; by contrast, $V_{LIM} = 10$ V provides the maximum compensation value $f_{add} = +F_{max} \times A_{LIM}$.

Symbol	Significance/gated parameter			
f _{add}	Additive compensation value for the frequency setpoint			
F _{max}	Maximum frequency (parameter 23)			
A _{LIM}	Scaling factor for analogue LIM input (parameter 34)			
V _{LIM}	7 The voltage applied to analogue input LIM in V			
Table 8.6				

33 - Frequency factor

SL / FO / SLV / EC – OE

Frequency setpoint compensation by multiplicative compensation value. This parameter defines a factor in percent by which any frequency setpoint is multiplied.

The function is required, amongst other things, if several inverters with the same frequency reference value are to operate at differing speeds of rotation. If an additive setpoint is selected via parameter **32 – Function of the LIM input**, the sum of the two setpoints is influenced via this parameter.

The frequency factor can be set in three different ways:

- 1. Direct entry by keypad via this parameter (this is the simplest method of setting fixed rotational speed ratios between the drives of a group).
- 2. The frequency factor can also be preset via the LIM input. For this purpose, parameter 32 must be programmed for function "Frequency setpoint compensation by multiplicative compensation value". In this case, the frequency factor can **no** longer be changed by this parameter and **neither** can it be changed with the aid of inputs PS1 and PS2.
- 3. Moreover, the change in the frequency factor can be made with the aid of inputs PS1 and PS2 if they are programmed for one of the functions "Incrementing resp. decrementing the frequency factor" (parameters 99, 9A).

NOTE: the frequency factor can be changed only within the input limits stipulated by parameters **38** – **Low frequency factor limit** and **39** – **High frequency factor limit** in the case of all three variants (keypad input, preset via PS inputs or setting via LIM input). If the current selection of parameter 33 is no longer within the changed limits after the change to parameters 38 and 39, the frequency factor is immediately adapted to the new limits. Parameter 33 cannot be set higher than parameter 39.

The frequency factor can also be read in the read-only parameter E3. This provides the option of transferring the frequency factor to the standard display 2 or outputting it at one of the two analogue outputs.

◊ Value range: 0.00–150.00%

Default: 100.00%

34 – Scaling factor A_{LIM} for analogue LIM input

SL / FO / SLV / EC – OE

Scaling of the LIM input if use of the LIM input as an analogue input has been defined, i.e. if either

04.08.05	Parameter Description	2 62
07_GB_T2	UD 7000 — 1.5–355.0	2-63

1) function "Frequency setpoint compensation by additive compensation value" (setting 0 or 4) has been selected in parameter 32.

The parameter defines the percentage value of the maximum frequency to which 10 V at the LIM input corresponds. Please refer to the notes 1) and 4) for parameter 32 for the precise formulae. This function is helpful in the case of very simple jockey arm controls for instance so as to set the control influence of jockey arm deflection

or

2) the setpoint sources 20 or 21 "LIM Master setpoint $f \times n$ " have been selected in parameter 31.

Please refer to the notes 4) and 5) for parameter 31 for the precise formulae.

\diamond	Value range: 0.0–150.0%	Default: 1	0.0%

35 – Calibration digital LIM input with factor D _{LIM}	SL / FO / SLV / EC
---	--------------------

Scaling of the digital frequency setpoint input. The parameter defines the ratio of inverter frequency setpoint to frequency at the LIM input in Hz/kHz. Input frequencies up to max. 100 kHz are processed. The inverter frequency setpoint is calculated as follows:

$f_{Inverter} = f_{LIM} \times D_{LIM}$ where	f _{Inverter}	 inverter output frequency in Hz
	f _{LIM} D _{LIM}	 frequency setpoint at the LIM input in kHz factor digital frequency input in Hz/kHz

The parameter takes effect only when programming parameter 31 - Setpoint selection (frequency setpoint) for function LIM frequency input (selection parameter 31 = 7).

EXAMPLE:

 $k_{LIM} = 2.0 \text{ Hz/kHz} \rightarrow f_{LIM} = 50 \text{ kHz} \rightarrow f_{Inverter} = 100 \text{ Hz}.$

♦ Value range: 0.1–1000.0 Hz/kHz

Default: 2.0 Hz/kHz

36 - Pulse number of LIM input

SL/FO/SLV/EC

See also the notes under "(1)" in order to facilitate understanding.

1) Master-Slave mode via LIM input ⁽¹⁾

Scaling of the frequency at the digital LIM input if used as Master setpoint input (parameter 31 = 9).

The parameter indicates the number of pulses arriving at the input per revolution. Input frequencies up to maximum 100 kHz are processed. The inverter frequency setpoint is calculated as follows:

f _{LIM}	where	f _{Inverter}	 inverter output frequency in Hz
$f_{\text{Inverter}} = \frac{I_{\text{LIM}}}{7}$		f _{LIM}	- frequency setpoint at the LIM input in kHz
LIM		Z _{LIM}	 number of the pulses per revolution

EXAMPLE:

The Master (Master driver) outputs ten times the current output frequency at output ST4 (parameter 95 = 115). The Slave (Slave drive) should receive the same frequency as the setpoint. For this purpose, the LIM input (parameter 32 = 3) with the setpoint source "LIM Master setpoint" (parameter 31 = 9) is used and the number of pulses per revolution is set to 10 in parameter 36 (Z_{LIM}).

The output fre-	245 Hz is output at		254 Hz is meas-		The frequency set-
quency of the Mas-	the ST4 output of	_	ured at the LIM in-	_	point of the Salve
ter is 25.4 Hz and \neg	the Master drive.		put of the Slave,		drive is 25.4 Hz.
parameter 3E = 10.			Z _{LIM} = 10.		

2.64	Parameter Description	04.08.05
2-64	UD 7000 — 1.5–355.0	07_GB_T2

2) Master-Slave mode via Channel 2 of the encoder option card ⁽¹⁾

If using the option card with two-channel encoder evaluation, this parameter is interpreted as the number of lines of the Master encoder if parameter **31 – Setpoint selection** (frequency setpoint) has been set to value 8.

3) Using the setpoint source "LIM frequency input 100 kHz" (parameter 31 = 7) ⁽¹⁾

Parameter 36 (Z_{LIM}) is determined automatically by the program (possible values are 10 and 100) and **cannot** be changed in this case.

NOTES:

(1) Certain ratios (i) can be programmed with the aid of Z_{LIM} by entering the product of $z \times i$ instead of the actual number of lines (z) of the Master at this point in parameter 36 for Z_{LIM} ;

where $i = \frac{f_{Master}}{f_{Slave}}$

owing to the value range of Z_{LIM} (only integers in the range 1–16384) however, only specific rotational speed ratios can be implemented in this way. "Non-linear rotational speed ratios" must be programmed with the aid of parameter **33 – Frequency factor**.

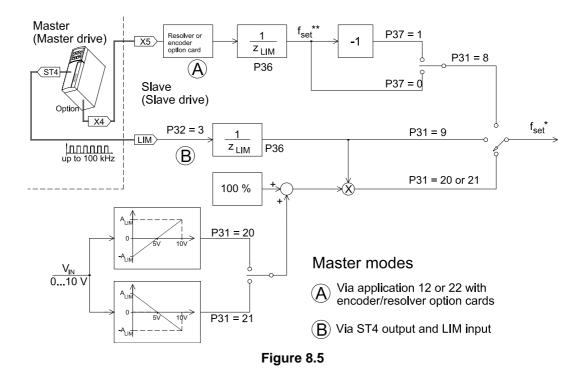
EXAMPLE:

For the example described above, let us program Z_{LIM} so that the Slave drive turns only half as fast as the Master, i.e. the following applies:

$$f_{Slave} = \frac{f_{Master}}{2}$$
 or $i = \frac{f_{Master}}{f_{Slave}} = 2$

This means $Z_{LIM} = z \times i = 10 \times 2 = 20$ for parameter 36.

The output fre-	254 Hz is output at		254 Hz is meas-		The frequency set-
quency of the Mas-	output ST4 of the	_	ured at the LIM in-	_	point of the Slave
ter is 25.4 Hz, pa-	Master drive.	\rightarrow	put of the Slave,	\rightarrow	drive is 12.7 Hz.
rameter 3E = 10.			Z _{LIM} = 20.		


♦ Value range: 1–16384

The illustration below clearly shows the Master-Slave modes:

 04.08.05
 Parameter Description
 2-65

 07_GB_T2
 UD 7000 - 1.5 - 355.0
 2-65

Default: 6

37 - Direction of rotation, master setpoint

The setpoint can be inverted through parameter 37 when "8" is selected as the setpoint source in parameter 31.

0	Motor rotates in the same direction as the master
1	Motor rotates in the opposite direction to the master

◊ Value range: see Table

38 - Low frequency factor limit

The range in which parameter **33** – **Frequency factor** can be varied can be restricted with parameters 38 and 39.

The frequency factor can be varied using three different methods (keypad input, preset via PS inputs or setting via LIM input) but only within the input limits stipulated by parameter **38** – **Low frequency factor limit** and **39** – **High frequency factor limit** in the case of all three variants.

If the present value of parameter 33 is no longer within the changed limits after changing parameters 38 and 39, the frequency factor is adapted immediately to the new limits.

If the frequency factor is preset via the LIM input (parameter 32, setting 2), the voltage range 0–10 V is mapped in linear fashion onto parameters 38 and 39, i.e. the frequency factor corresponds to the value of parameter **38** – **Low frequency factor limit** with 0 V at the LIM input and the frequency factor is identical to the value entered for the frequency factor in parameter **39** – **High frequency factor limit** with 10 V input voltage.

Overlap of the limits is not permitted by the unit so that the lower limit is always lower than the upper limit.

◊ Value range: 0.00–149.99%

Default: 0.00%

2 66	Parameter Description	04.08.05
2-66	UD 7000 — 1.5–355.0	07_GB_T2

Default: 0

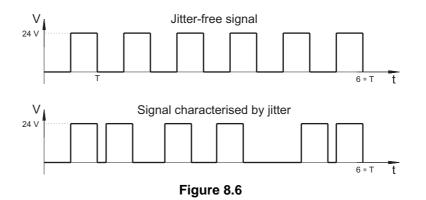
SL / FO / SLV / EC

SL/FO/SLV/EC

39	– High frequency factor limit	SL / FO / SLV / EC
	See parameter 38.	
\diamond	Value range: 0.01–150.00%	Default: 105.00%
3A	 External frequency setpoint 1 	SL / FO / SLV / EC – OE / SC
	Frequency setpoints for setting through the s rameter 31 – Setpoint selection (frequency	· · · · · · · · · · · · · · · · · · ·
\diamond	Value range: -325.00-325.00 Hz	Default: 0.00 Hz
3B	 External frequency setpoint 2 	SL / FO / SLV / EC – OE / SC
	Frequency setpoints for setting through the s rameter 31 – Setpoint selection (frequency	
\diamond	Value range: -325.00-325.00 Hz	Default: 80.00 Hz
3C	 Filtering time constant VIN/CIN input 	SL / FO / SLV / EC – OE
	This parameter allows you to adapt the filterin The shorter the chosen time is, the faster the	•
	The value is represented exponentially in the	form 2 ^x ms.
\diamond	Value range: 0–10	Default: 4 (corresponds to 2^4 ms = 16 ms)
3D	 Filtering time constant LIM input 	SL / FO / SLV / EC – OE
	The filtering time constant of the input VIN car	be adapted by means of this parameter. The

The filtering time constant of the input VIN can be adapted by means of this parameter. The shorter the chosen time is, the faster the inverter reacts to changes. The time constant is used for analog as well as for digital signals.

The value is represented exponentially in the form 2^{x} ms.


◊ Value range: 0–10

Default: 4 (corresponds to 2^4 ms = 16 ms)

3E – Pulse number ST4-output

Scaling of the frequency output ST4. The parameter takes effect if programming parameter **95** – **Output ST4 function selection** (setting 16, "Frequency output frequency setpoint × n") ($f_{out} = f_{Motor} \times k_{Pulse}$).

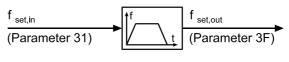
The parameter defines the number of pulses to be issued at the output per electrical revolution (corresponds to the stator frequency). Output frequencies up to $f_{Pwm}/2$ (cf. also parameter **79 – PWM frequency**) are output. A jitter-free signal can be obtained up to an output frequency of $f_{Pwm}/4$. Above this, only the mean value of the highlighted frequency corresponds to the anticipated frequency value. The illustration shows these two signal waveforms.

04.08.05	Parameter Description	2-67
07_GB_T2	UD 7000 — 1.5–355.0	2-07

SL / FO / SLV / EC – OE

It can be seen that, after time $6 \times T$, the number of oscillations is the same but the flanks of the individual pulses are not equally spaced in the case of the signal characterised by jitter. The number of pulses, measured over a longer period, is identical in the case of both signal traces.

HINT!


The mark-to-space ratio in the case of the jitter-free signal is always 50:50.

♦ Value range: 1–100

Default: 10

3F – Frequency setpoint on the basis of ramp (read-only) SL / FO / SLV / EC

Display of the frequency setpoint at the output of the up or down ramp. The frequency setpoint shown on the standard display 1 is processed directly by the inverter only if the ramp function (parameter 72 = 3) is deactivated. Otherwise, the parameterised acceleration resp. deceleration times (see parameter 25 to 28) are complied with.

Setpoint ramp (Parameter 72)

Figure 8.7

 \diamond

Resolution: 0.1 Hz

8.4 Group 4 – Frequencies

Frequency setpoints for selection via the binary inputs (PS1–PS3; parameters 99, 9A and 9B). The required binary inputs must be programmed for function "Selection of a fixed frequency" (setting x00) and the selected control mode (parameter 29) must use the setpoint from the terminals in the current operating mode (LOCAL/REMOTE). Each fixed frequency can also be stipulated directly (i.e. regardless of the state of the binary inputs) as a frequency setpoint with the aid of parameter 31.

The set value of fixed frequency 1 can also be used as a jog frequency. For this purpose, the binary inputs R/J and PS3 must be activated, parameter **98 – Run/Jog input function selection** must be programmed for function "Selection Jog mode" (setting x00) and LOCAL mode must be activated with parameter 9B (setting x06). For as long as key FWD or REV is now pressed, the motor operates at the set fixed frequency 1 in the corresponding direction.

41 – Fixed frequency 1	SL / FO / SLV / EC – OE
42 – Fixed frequency 2	SL / FO / SLV / EC – OE
43 – Fixed frequency 3	SL / FO / SLV / EC – OE
44 – Fixed frequency 4	SL / FO / SLV / EC – OE
45 – Fixed frequency 5	SL / FO / SLV / EC – OE
46 – Fixed frequency 6	SL / FO / SLV / EC – OE

The frequency setpoint can also be determined by programming and wiring the inputs PS1, PS2 and PS3 with parameters 99 to 9B apart from using parameter **31 – Setpoint selection (frequency setpoint)**. With valences $PS1 - 2^0$, $PS2 - 2^1$, $PS3 - 2^2$, inputs PS1 - PS3 form a numerical value which is used as the selection parameter for the terminal setpoint. The corresponding bit is set equal to 1 if the input is programmed for function x00 "Selection of a fixed frequency" with the relevant parameter 99 to 9B "Selection function input PS1/PS2/PS3" and the input has been activated. If one of the two conditions is not met, the bit is set equal to zero. The following setpoint sources (see Table 8.7) are assigned to the possible values of the selection parameter thus generated. If all three bits are equal to zero, only parameter **31 – Setpoint selection (frequency setpoint)** determines the setpoint source.

PS3	PS2	PS1	Frequency setpoint defined by:
0	0	0	Parameter 31 – Setpoint selection (frequency setpoint) ⁽¹⁾
0	0	1	Parameter 41 – Fixed frequency 1 ^{(2) (3)}
0 (4)	1 ⁽⁵⁾	0	Parameter 42 – Fixed frequency 2 ⁽³⁾
0	1	1	Parameter 43 – Fixed frequency 3 ⁽³⁾
1	0	0	Parameter 44 – Fixed frequency 4 ⁽³⁾
1	0	1	Parameter 45 – Fixed frequency 5 ⁽³⁾
1	1	0	Parameter 46 – Fixed frequency 6 ⁽³⁾
1	1	1	Parameter 23 – Maximum frequency
Table 8.7			

(1) The frequency setpoint is determined by parameter **31 – Setpoint selection (frequency setpoint)**.

(2) The set value of fixed frequency 1 can be used as a jog frequency. For this purpose, the binary inputs R/J and PS3 must be activated, parameter 98 (Selection function input Run/Jog) must be programmed for function "Jog mode selected" (setting x00) and LOCAL mode must be activated with parameter 9B (setting x06). The motor operates at the set fixed frequency 1 in the corresponding direction for as long as key FWD or REV is pressed.

(3) In the case of the fixed frequencies, parameters 41–46, only the setpoint which is not higher than the maximum frequency acts. In the case of higher values, the maximum frequency is used.

(4) "0" means: the setting of the data code for parameters 99–9B is greater than 0 or active level is not applied to the input.

(5) "1" means: selection of a fixed frequency (data code "0" in parameters 99–9B) and input PS1–PS3 is assigned active level.

ATTENTION!

Depending on the parameter setting, the individual fixed frequencies also have the following further meanings:

- 1. Fixed frequency 1 is also used as a jog frequency (see Table 8.7).
- Fixed frequencies 4, 5 and 6 are used to stipulate the V/f characteristic if parameter 62

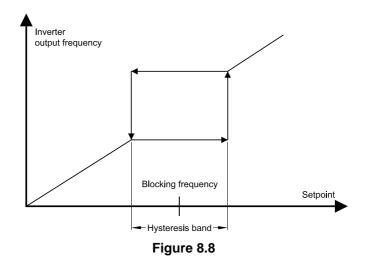
 V/Hz characteristic selection is programmed for "Specification of a fixed V/Hz characteristic" (setting 2).
- 3. Certain fixed frequencies have functions for the alarm outputs (binary outputs and relay outputs).

	Factory default setting				
FixedFixedFixedFixedFixedfrequency 1frequency 2frequency 3frequency 4frequency 5frequency 5					
5.0 Hz	20.0 Hz	40.0 Hz	60.0 Hz	0.0 Hz	0.0 Hz

◊ Value range: 0.0–875.0 Hz

04.08.05	Parameter Description	2-69
07_GB_T2	UD 7000 — 1.5–355.0	2-09

47 – Hysteresis band for blocking frequencies


SL / FO / SLV / EC - OE

This parameter defines the width of the frequency bands whose frequencies are defined by the parameters 48, 49, 4A and 4B. The respective blocking frequency band is not active when the value of one of these parameters is Zero. No stationary operating point can be moved to within an active blocking frequency band.

The defined frequency bands apply to both directions of rotation. Pay attention to the fact that the frequency bands must not overlap. Sorting is not necessary.

This parameter has a special function in speed control applications (e.g. parameter 2C = 10, 20 or 50), if one of the two options to monitor the control error between the reference and actual frequency is chosen:

- 1. Message "control error is too large at one of the binary outputs" ⇒ see function x26 of the outputs ST 1 to 4 or of the relay output function selection (parameters 92 to 96).
- With parameter 8E Selection speed control, users can specify that error 8 "Speed observer" be triggered by excessive speed as well as large control errors.

\diamond	Value range: 0.0–100.0 Hz
------------	---------------------------

Default: 1.0 Hz

48 – Blocking frequency 1	SL / FO / SLV / EC – OE
49 – Blocking frequency 2	SL / FO / SLV / EC – OE
4A – Blocking frequency 3	SL / FO / SLV / EC – OE
4B – Blocking frequency 4	SL / FO / SLV / EC – OE

See further explanations under parameter **47 – Hysteresis band for blocking frequen-**cies.

♦ Value range: 0.0–875.0 Hz

Default: 0.0 Hz

8.5 Group 5 – Torque

51 – Torque limit selection, right rotation, motor operation	SL / FO / SLV / EC – OE
52 – Torque limit selection, left rotation, motor operation	SL / FO / SLV / EC – OE
53 – Torque limit selection, right rotation, generator operation	SL / FO / SLV / EC – OE
54 – Torque limit selection, left rotation, generator operation	SL / FO / SLV / EC – OE

0 70	Parameter Description	04.08.05
2-70	UD 7000 — 1.5–355.0	07_GB_T2

HINT!

Parameters 51–54 define the control source from which the torque limit for the individual quadrants can be set.

0	1.5 M _{rated}
1	LIM input (10 V = parameter 55) $^{*)}$
2	 The torque limit is defined by means of the following parameters: Torque limit (parameter 51) through parameter 58. Torque limit (parameter 52) through parameter 59. Torque limit (parameter 53) through parameter 5A. Torque limit (parameter 54) through parameter 5B.
3	External torque limit parameter 5C (torque limit editable through SIO and device keypad (display))

- *) The prerequisite for deriving the torque limit from the LIM input is that the parameter 32 must be set to "Torque limit". If this is not the case, the value of the torque factor (parameter 55) is used as the torque limit (the voltage at the LIM input is assumed to be 10 V).
- ♦ Value range: see Table

Default: 0

Default: 100.0%

SL / FO / SLV / EC – OE

55 - Torque factor LIM input

Scaling of the LIM input if "0–10 V torque limit" is selected as the function for the LIM input (parameter 32). This parameter defines the percentage with regard to the rated motor torque to which 10 V at the LIM input corresponds.

EXAMPLE:

Setting = 50%: a voltage of 10 V is applied at the LIM input. Then, the torque limit is 50% of the rated motor torque.

\diamond	Value range: 0.0-400.0%	Default: 100.0%
56	 Additional acceleration torque 	SL / FO / SLV / EC – OE
57	 Additional deceleration torque 	SL / FO / SLV / EC – OE
	In acceleration or deceleration events, these torques are provid limit defined through the selection parameters and the limits. The respond to the torques that are needed for acceleration or do masses.	nese values essentially cor-

Value range: -500.0-500.0%	Default: 0.0%
 Torque limit, right rotation, motor operation 	SL / FO / SLV / EC – OE
- Torque limit, left rotation, motor operation	SL / FO / SLV / EC – OE
- Torque limit, right rotation, generator operation	SL / FO / SLV / EC – OE
- Torque limit, left rotation, generator operation	SL / FO / SLV / EC – OE
	Value range: -500.0-500.0% - Torque limit, right rotation, motor operation - Torque limit, left rotation, motor operation - Torque limit, right rotation, generator operation - Torque limit, left rotation, generator operation

Torque limit for the quadrant when the respective parameter is selected as the source in the affiliated selection parameter (parameters 51–54).

NOTE: these parameters are displayed only if parameters 51 to 54 have been set to 2.

♦ Value range: 0.0–400.0%

 04.08.05
 Parameter Description
 2-71

 07_GB_T2
 UD 7000 - 1.5 - 355.0
 2-71

Group 5 – Torque

SL / FO / SLV / EC - OE / SC

5C – External torque limit

Torque limit when the external torque limit is selected as the source for the respective quadrant in the affiliated selection parameter (parameters 51–54).

This allows a uniform torque limit to be preset for all four quadrants (motor/generator/clockwise/anti-clockwise) either via the keypad or via the serial port.

♦ Value range: 0.0–400.0%

5E - Torque setpoint factor

Scaling of the VIN or CIN input when "Torque control" is programmed as the application (parameter 2C). The parameter defines the percentage with regard to the rated motor torque to which +10 V at the input corresponds. A setpoint of $-k_T...+k_T$ (k_T – torque setpoint factor) can be set when VIN or CIN is programmed to specification of a bipolar setpoint (parameter **31 – Setpoint selection (frequency setpoint)**).

NOTE: this parameter is visible only in the case of application settings (parameter 2C) with closed-loop torque control.

◊ Value range: 0.0–150.0%

Default: 100.0%

SL – OE

5F – Gain (V_{Rm}), acceleration control (ramp), torque

Acceleration control is used to adapt the set acceleration ramp to the current load conditions. This control mode is used in applications which must be operated with as short a ramp as possible, e.g. with differing load conditions (one typical example is that of an extruder).

Proceed as follows when setting:

- 1. Set the minimum time for the acceleration and deceleration time at the minimum load. At this setting, the inverter should not yet reach its current or torque limits.
- Then operate at maximum load and vary the gain V_{Rm} until oscillation-free acceleration/ deceleration is achieved.

After connecting the load, optimise factor V_{Rm} so that the inverter responds fast enough to the load change without tending to oscillate.

The diagram below shows an example of an operating cycle with differing load conditions.

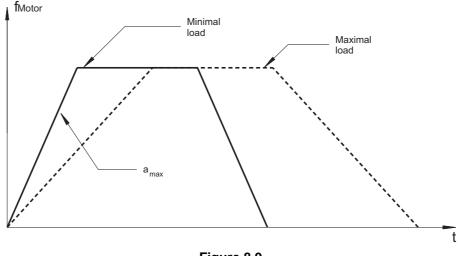


Figure 8.9 Load-dependent operating profiles

The new ramp can be calculated on the basis of the following formula as a function of the current torque:

0 70	Parameter Description	04.08.05
2-72	UD 7000 — 1.5–355.0	07_GB_T2

Default: 100.0%

SL/FO/SLV/EC-OE

Default: 200.0%

$$a = a_{max} \times V_{Rm} \times \left[\frac{M_{Limit} - M}{M_{Limit}}\right]$$

 m_{Limit} = the torque limit defined by parameter 51 to 54 in the current quadrant.

A numeric example:

 $\begin{array}{ll} a_{max} & = 10 \mbox{ Hz/sec.} \\ M_{Limit} & = 150\%; \mbox{ torque limit set via parameters } 51-54. \\ M & = \mbox{ current torque, e.g. } 100\%. \\ V_{Rm} & = \mbox{ parameter } 5F: \mbox{ e.g. } 2. \end{array}$

This achieves a resultant ramp of:

 $a = 10 \text{ Hz/sec} \times 2 \times 0.5 = 10 \text{ Hz/sec}$

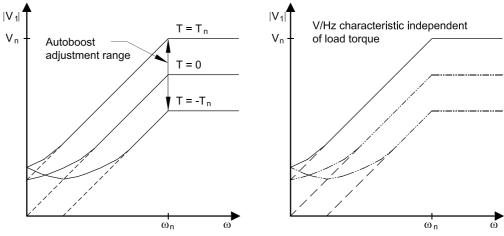
This means that, at this setting, there is still no ramp change at nominal torque. By contrast, at 150%, the ramp would be changed by a factor of "0" (the ramp is stopped).

The acceleration "a" (acceleration/deceleration time) may consequently lie between values 0 and a_{max} .

Acceleration control can be deactivated and activated with parameter **FC** – **Ramp acceleration control (torque)**.

NOTE: this parameter has no significance when operating with speed control and <u>SLV²</u>.

♦ Value range: 0.0–500.0%


8.6 Group 6 – V/Hz Characteristic

This parameter switches the Autoboost function off/on.

0	Off
1	On

The "Autoboost" function produces constant excitation of the motor independently of the load. The affect on the V/Hz characteristic is shown below:

V/Hz characteristic with Autoboost

V/Hz characteristic without Autoboost

04.08.05	Parameter Description	0 70
07_GB_T2	UD 7000 — 1.5–355.0	2-73

The inverter computes the characteristic on the basis of the parameters in the "Motor data" group and the stator resistance (parameter F3). The amount of the voltage at low frequencies can be additionally influenced by the parameter 22 - Boost. A 100% value of the "Boost" parameter corresponds to the characteristic determined by the inverter.

ATTENTION!

2

Setting excessive values may result in swift heating up of the motor at low speeds.

NOTE: this parameter is irrelevant during operation with speed control. It is not visible in <u>SLV[@]</u> applications.

◊ Value range: see Table

Default: 1

62 - V/Hz characteristic selection

SL/FO/SLV/EC

This parameter defines,

- whether the assignment of the output voltage to the output frequency is performed manually (setting 2) or
- how the field is preset in the case of automatic (controlled) assignment of voltage frequency (default setting for all applications SL/<u>SLV</u>[@]/EC/FO). Field preset defines how the motor is electrically excited. Excitation of the motor is normally performed with the nominal excitation determined automatically by the inverter from the motor parameters. At this value, assumed to be 100%, the drive operates with the greatest dynamic response and achieves its nominal torque. In certain operating states, it is necessary or required to reduce this excitation:
 - Energy-saving mode.
 - Operation at the voltage limits.
 - Asynchronous motors are operated above the nominal frequency at constant output.
 - $P_{mech} = M \times \omega$ (M motor output torque, ω rotor rotational frequency).

The frequency range in which the drive is operated with an excitation less than 100% (i.e. the field resp. the field strength is attenuated) is the so-called field-attenuation range.

0	Realization of a V/Hz characteristic with constant excitation. In the field attenuation range, the amount of excitation is controlled to the possible maximum value corresponding to the available voltage.
1	Energy saving mode. The necessary excitation of an induction motor is adapted to the current load of the motor and the available voltage. This operating mode is not suitable for high dynam- ic requirements. The low limit of motor excitation is limited by parameter 6C – Min- imum excitation . ¹⁾
2	Specification of a fixed V/Hz characteristic with different V/Hz ratios over the frequency range: [0, V ₀], [f _{fix,4} , V ₁], [f _{fix,5} , V ₂], [f _{fix,6} , V ₃] and [f _{knee} , V _n]. ²⁾
3	Realization of a V/Hz characteristic with constant excitation up to the knee frequency (parameter 21). The ratio (f_{knee}/f) of excitation is reduced above the knee frequency (controlled operation); f is also dependent on parameter 6E – Filter field weakening in the case of applications 51 and 53.
4	Realization of a V/Hz characteristic with constant excitation up to the knee frequency (parameter 21). The ratio $(f_{knee}/f)^2$ is reduced above the knee frequency (controlled operation); f is also dependent on parameter 6E – Filter field weakening in the case of applications 51 and 53.
5	Realization of a V/f characteristic with constant excitation with configurable voltage control. Voltage control as with selection 0, but configurable using parameter 6B – Cut-in point of voltage limitation control and 6F – Increment .

-74	Parameter Description	04.08.05
-/4	UD 7000 — 1.5–355.0	07_GB_T2

6 Operation of a motor with permanent excitation. This value is preset automatically by the program if an EC application is selected (parameter 2C). ²⁾

NOTES:

- No energy saving mode is possible for <u>SLV</u>² applications. Any corresponding input is ignored by the inverter and a V/Hz characteristic with constant excitation is realised ("0" setting).
- 2) It is not possible to specify fixed V/Hz characteristics for FO, EC and <u>SLV</u>² applications. Any corresponding input is ignored by the inverter and a V/Hz characteristic is realised with constant excitation up to the knee frequency ("3" setting). The voltage/frequency affiliation is defined by the following parameter relationships:

Frequency	0 Hz	Parameter 44	Parameter 45	Parameter 46	Parameter 21
Voltage	Parameter 67	Parameter 68	Parameter 69	Parameter 6A	Parameter 11

♦ Value range: see Table

Default: 3

SLV / SL - OE

63 - DC brake current

Magnitude of the current injected during "DC braking" state. The factory default setting of the DC braking current is dependent on the nominal current of the motor specified in parameter group 1.

Important: if the value of the parameter **16 – Rated current** is changed, this value (parameter 63) is also adapted:

Default: Current of DC brake = $\frac{Parameter 16 - Rated current}{2}$

Inverter (kW)	1.5	2.2	3.0	4.0	5.5	7.5	11.0	15.0	18.5	22.0	30.0	37.0	45.0	55.0
Value range: 0.0 A	3.0 A	3.8 A	3.8 A	5.3 A	5.3 A	13.7 A	13.7 A	24.5 A	35.1 A	35.1 A	47.3 A	57.9 A	69.4 A	83.2 A

Inverter (kW)	75	90	110	132 (VT)	132 (CT)	160 (CT)	200 (CT)	250 (CT)	315 (VT)	355 (VT)
Value range: 0.0 A	150.0 A	180.3 A	210.0 A	200.0 A	200.0 A	200.0 A	200.0 A	200.0 A	200.0 A	200.0 A

NOTE: this parameter has no relevance during operation with closed-loop speed control (EC/FO).

◊ Value range: see Table

64 – DC brake time

Duration for which DC braking operation is active. The time starts when the frequency falls below the DC voltage on frequency (parameter 65) after a STOP command is issued. During the time of DC braking operation, the braking resistor is not used, i.e. the chopper transistor is generally not triggered.

♦ Value range: 0.0–60.0 s

65 – DC brake switch-on frequency

After issuing of a stop command, DC braking operation is activated when the frequency falls below the frequency that has been defined with this parameter.

NOTE: this parameter is not relevant during operation with speed control (EC/FO).

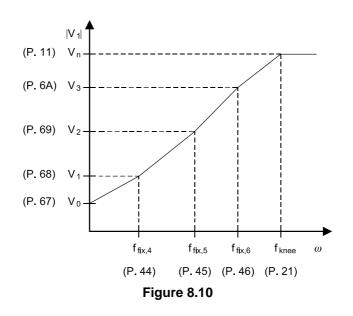
- Value range: 0.0-875.0 Hz
- 04.08.05
 Parameter Description
 2-75

 07_GB_T2
 UD 7000 1.5-355.0
 2-75

SL / FO / SLV / EC – OE

Default: 1.0 s

SLV / SL – OE


Default: 0.5 Hz

	- Field build-up time	
	Period of time during which the motor field is build up after a s quency setpoint is kept at Zero during this time.	tarting command. The fre-
	To activate the field build-up time set here, the parameter 6D m	ust be set to "1".
	NOTE: this parameter has no significance in conjunction with E servo motor). If possible, the field build-up time should be activitions with <u>SLV</u> ^{$@$} control.	••
0	Value range: 0.1–10.0 s (Size IIVI)	Default: 0.5 s
>	Value range: 0.1–10.0 s (Size VIIIX)	Default: 1.0 s
7	 – V/Hz characteristic, voltage V0 	SL
8	– V/Hz characteristic, voltage V1	SL
9	– V/Hz characteristic, voltage V2	SL
δA	 V/Hz characteristic, voltage V3 	SL
	Together with the rated motor voltage V_{nom} (parameter 11) and	d the knee frequency funce

Together with the rated motor voltage V_{nom} (parameter 11) and the knee frequency f_{knee} (parameter 21), these parameters define a voltage/frequency characteristic that is used by the inverter when the parameter **62** – **V/Hz characteristic selection** is programmed for function 2. The characteristic consists of up to four lines and is defined by the points [0, V₀], [$f_{fix, 4}$, V₁], [$f_{fix, 5}$, V₂], [$f_{fix, 6}$, V₃] and [f_{knee} , V_n]. See also the following table and figure.

Pay attention to the fact that the characteristic is generated from all participating parameters. It is omitted to assign identical values to parameters (e.g. the number of line segments is reduced by one with V1 = V2 and $f_{fix, 5} = f_{fix, 6}$).

NOTE: these parameters have no significance on versions with closed-loop current control $(EC/FO/\underline{SLV}^{2})$ and are visible only if parameter **62 – V/Hz characteristic selection** is set to 2 (presetting a fixed V/f characteristic).

♦ Value range: 0.0–480.0 V

2

Default: see following table

2-76	Parameter Description	04.08.05
2-70	UD 7000 — 1.5–355.0	07_GB_T2

Frequency	0 Hz	Parameter 44 f_FIX4	Parameter 45 f_FIX5	Parameter 46 f_FIX6	Parameter 21 f_Knee
Voltage (default)	Parameter 67 (0.0 V)	Parameter 68 (100.0 V)	Parameter 69 (150.0 V)	Parameter 6A (200.0 V)	Parameter 11 (rated motor voltage)

6B - Cut-in point of voltage limitation control

The percentage value indicates at what voltage (referred to the maximum value) voltage control cuts in. Up to this value, the field is maintained constant at the nominal value. Under certain conditions (e.g. greatly fluctuating loads at high rotational speeds), it may be necessary to reduce this value.

NOTE: this parameter is visible only if parameter 62 is set to 5.

◊ Value range: 95.0–99.5%

Default: 98.0%

OE

OE

6C – Minimum excitation

This parameter defines the minimum excitation with regard to the rated excitation for induction motors that the inverter does not fall below. The parameter is active during automatic realization of the field attenuation range by the inverter and in the energy saving mode (parameter 62 - V/Hz characteristic selection programmed to "Realization of a V/Hz characteristic with constant excitation" or "Energy saving mode"). The "Minimum excitation" parameter is not active for the other settings of parameter 62.

In the energy saving mode, excitation of the motor is reduced as a function of the current load. Thus, a large part of the excited power is saved when operating the motor with a low load. However, excitation is not reduced below the value with respect to the rated excitation that is defined with this parameter.

As a certain time is needed when modifying the load before the field has build up again, and thus before the full torque is available again, this operating mode is **not** suitable for high dynamic requirements.

♦ Value range: 15.0–100.0%

Default: 33.0%

Default: 1 SLV – OE

6D – Field build-up time activation

0	Off
1	On

"Off": no field build-up time is taken into account.

"On": the field build-up time specified in parameter 66 is kept to after every starting command.

NOTE: for dynamic applications with <u>SLV</u>^{\odot} control, as far as possible the field build-up time should be activated. For EC applications (synchronous machines), this parameter is set automatically to 0 ("OFF").

◊ Value range: see Table

6E – Filter field weakening

The output frequency is also included in the field preset calculation in applications 51 and 53. However, the output frequency is also routed via a PT1 filter and thus smoothed before it is used for calculation. The filter's time constant is entered in this parameter. The parameter is required in order to be able to accelerate into the field-attenuation range dynamically (with short ramps) in the specified applications. Higher values mean greater smoothing and attenuate any oscillation (the drive behaves more steadily in the field-attenuation range).

04.08.05	Parameter Description	2 77
07_GB_T2	UD 7000 — 1.5–355.0	2-11

HINT!

NOTE: this parameter is displayed only if applications 51 or 53 are active.

♦ Value range: 0–2000 ms

6F – Increment

The parameter determines the increment with which the field to be preset is reduced or increased when the voltage limit defined in parameter 6B is reached. The increment should be increased only slowly.

NOTE: this parameter is displayed only if parameter 62 is set to setting 5.

◊ Value range: 1–20

8.7 Group 7 – Inverter Functions

71 – Start and Stop options

This parameter defines the behaviour of the inverter after connection of the line and the function of the stop command.

The entry for parameter 71 is routed via a filter which corrects illegally entered values so that the next legal value down (see table) is accepted as the entry (legal digits are only 0 or 1). If, for instance, value 102 is entered, the inverter corrects this value automatically to value 101.

xxxx0	Autostart Off.	The units digit:	
xxxx1	Autostart On.	Defines the starting behaviour of the inverter after con- necting the line power supply. If Autostart is activated and the Start command is applied to the control terminals, the motor is automatically started after connecting to the line power supply. If Autostart is deactivated , the terminal in- put for START or FWD/REV must be switched over from Stop state to Start state after connection to the line power supply so that the Start command is executed (non-recur- rent signal change). CAUTION: if automatic start is activated by connecting to the line power supply, persons and systems will be at dan- ger. Systems may need to be equipped with additional monitoring and safety devices in accordance with the valid safety regulations.	
xxx0x	Catch Motor Off ⁽¹⁾ (Rotational speed- control deceleration in torque controlled mode)	The tens digit: This decides whether a check is conducted first as to whether the rotor is turning or not before energising the motor after a Start command. If the rotor is turning, the verter first measures the speed of rotation and synchron es with this frequency. From this point, the inverter accor- erates the motor to the required direction of rotation and frequency. If the function is deactivated, the drive is acc- erated to its frequency setpoint after the Start command issued.	
xxx1x	Catch Motor On ⁽²⁾ (Switch-off when ro- tational speed zero is reached) ⁽³⁾		
xx0xx	Deceleration of the motor in the case of Stop command	The hundreds digit: Determines the inverter behaviour after a STOP command (from the keypad, SIO or via terminal inputs).	
xx1xx	Free coasting of the motor in the case of Stop command		

Parameter Description 04.08.05 UD 7000 — 1.5–355.0 07_GB_T2

Default: 1

Default: 100 ms

SLV – OE

SL/FO/SLV/EC

Default: 0

SL/FO/SLV/EC

	1	
x0xxx	Ready function: Off	The thousands digit:
x1xxx	Ready function: On.	Activates automatic switch-on of the inverter and the func- tion of the applied setpoint. Drive Enable (FWD/REV) must be activated permanently for this purpose. If the setpoint overshoots/undershoots the reference value programmed in parameter 65 – DC brake switch-on frequency , the output stage is connected/disconnected automatically. Otherwise, the output stages of the inverter remain off until condition setpoint > parameter 65 is met. If the setpoint un- dershoots the stipulated value whilst the drive is already running, DC braking is commenced immediately and the output stages are then barred.
0xxxx	"Emergency-Stop"	The ten thousands digit:
1xxxx	No function of the Stop key in Remote mode	Determines the function of the Stop key in Remote mode. If the Stop key is evaluated as an Emergency-Stop key, an error message is generated in parallel with this (error 0)

(1) Special significance in Closed-Loop Torque Control mode (application 11, 21 or 51):

In the case of a Stop command, the drive decelerates immediately with speed control at the set down ramp (parameter 26 resp. 28).
(2) The "Motor-speed detection and switch-off of frequency converter at detected point" function is not possible in the case of <u>SLV</u>[®] applications. Entering xxx1x is ignored.

(3) Special significance in Closed-Loop-Torque Control mode (application 11, 21 or 51):

The motor is not braked by a speed controller in the event of a Stop command. If a Stop command is issued, the inverter waits to disable the output stages until the actual rotational speed of the motor shaft has reached value 0 Hz. Until such time, the arriving torque setpoints are still fully processed, i.e. the motor must be decelerated with the aid of the torque setpoint (by a higher-level control).

♦ Value range: see Table

If you switch over from LOCAL mode to REMOTE mode (see also parameter **9B – PS3 input function selection**), a Start command applied to the terminals is processed immediately if the motor is started. This may lead to death, injury or damage to equipment and installations.

72 – Ramp function selection

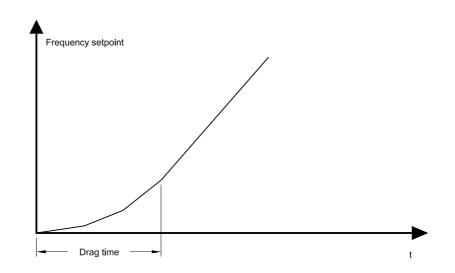
This defines the function of the up/down ramps and the assignment of the ramp datasets 1 and 2 to the operating states described in the table below. The two parameters parameter **25 – Acceleration time 1** and **26 – Deceleration time 1**, generate ramp dataset 1 and ramp dataset 2 is programmed via **27 – Acceleration time 2** and **28 – Deceleration time 2**.

x0	Change-over to ramp set 2 depending on a binary input (the prerequisite is that one of the inputs has been configured for ramp set change-over: parameters 98–9B).
x1	Ramp set 1 in the case of FWD rotation, ramp set 2 in the case of REV rota- tion.
x2	Ramp dataset 1 is used if the output frequency is lower than the frequency set in parameter 46 – Fixed frequency 6 ; Ramp dataset 2 takes effect at higher output frequencies.
x3	Ramp function off (no acceleration limiting). ¹⁾
x4	Ramp set 1 in the case of frequencies <knee-point 2="" case="" frequencies="" frequency,="" in="" of="" ramp="" set="" the="">knee-point frequency (parameter 21).</knee-point>
x5, x6, x7	Same as 0, 1, 2, but optimum deceleration depending on the DC link voltage. $\frac{2}{2}$
0x	S-shaped ramps off (observe parameter 73).
1x	S-shaped ramps on (observe parameter 73).

04.08.05	Parameter Description	2-79
07_GB_T2	UD 7000 — 1.5–355.0	2-19

ATTENTION!

- Possible only with speed control. The ramp function can be deactivated (setting x3) so that maximum dynamic response is achieved in applications FO, EC and <u>SLV</u>². For <u>SLV</u>² applications, it is advisable to use short, non-S-shaped ramps (setting 0x).
- 2) Parameter 75 is used to optimise the DC link voltage controller linked in this way.
- ♦ Value range: see Table


73 – Drag time

SL / FO / SLV / EC – OE

Default: 0

This parameter defines the duration of the rise or drop of acceleration when in parameter **72 – Ramp function selection** has been programmed as the ramp function.

It is advisable to connect S-shaped ramps in applications in which a high starting torque (break-away torque) is required. The higher the required torque is, the longer the drag time should be.

NOTE: this parameter is displayed only if using S-shaped ramps (parameter 72 is set to 1x).

♦ Value range: 0.1–5.0 s

74 - Power failure response

SL/FO/SLV/EC-OE

Default: 0.1 s

This parameter defines the behaviour of the inverter after a power failure.

0	Motor stop ¹⁾
1	Optimum deceleration with control of the DC link voltage ^{1) 2)}
2	Coast to stop

NOTES:

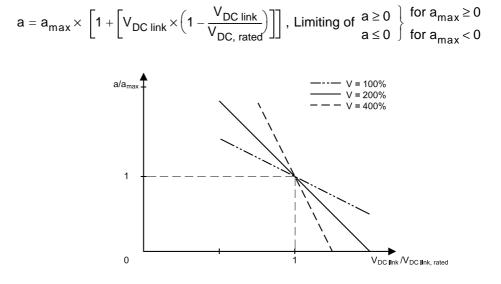
- In this setting, parameter F2 Power failure filter should be set to the minimum possible value so that braking of the motor can be commenced within the shortest possible time after a line power failure.
- 2) Optimization of the DC link voltage controller related to this function is realised with parameter 75.
- ♦ Value range: see Table

Default: 2

2-80	Parameter Description	04.08.05
2-00	UD 7000 — 1.5–355.0	07_GB_T2

75 – DC link voltage control gain V_{DC link}

SL/FO/SLV/EC-OE


This parameter does not become visible until parameter **74 – Power failure response** is set to 1 or until parameter **72 – Ramp function selection** is set to x5, x6 or x7. DC link voltage control can be activated in the following situations:

- Optimum deceleration of the motor in the event of power failure. Programmed through the parameter 74 – Power failure response.
- 2) Optimum deceleration of the motor without a connected braking resistor. Programmed by way of the parameter **72 Ramp function selection**.

In the event of a power failure, the supply of the inverter is safeguarded from the kinetic energy of the load so as to enable controlled shutdown of the motor despite failure of the line voltage. In both cases, the deceleration ramp is set so that no more electric energy is recuperated from the kinetic energy of the load as can be consumed using the inverter's DC link.

At the same time, the acceleration is set on the basis of a_{max} . a_{max} is the acceleration that results from the specified acceleration or deceleration time.

The gain $V_{DC link}$ defines the dependence on the DC link voltage and thus the control system's reaction speed:

♦ Value range: 0.0–2000.0%

Default: 500.0%

SLV / SL – OE

This parameter switches slip compensation off/on.

0	Off
1	On

When slip compensation is activated, the motor's rotor frequency is kept constantly at the value of the frequency setpoint, i.e. the motor's speed is independent of its load.

$$n = \frac{f_{set}}{p (p - Number of pole pairs of the motor)}$$

Good functioning of the speed controller is only guaranteed if the motor parameters have been entered correctly in parameter group 1. Further optimization of the speed controller is realised by way of parameter **77 – Slip compensation setting**. The highest accuracy of the controller can be achieved over a speed range of 1:10. Below this frequency, the speed may increase between the relieved and loaded motor.

04.08.05	Parameter Description	2-81
07_GB_T2	UD 7000 — 1.5–355.0	∠-0 I

If the application 50 ($\underline{SLV}^{\otimes}$ speed control) is active, the parameter has the following meaning:

0	Speed control at f _{Stator}
1	Speed control at f _{Rotor}

NOTE: this parameter is not relevant during operation with speed control (EC/FO).

♦ Value range: see Table

77 – Slip compensation setting

This parameter for setting electronic slip compensation (without tacho) only appears when the parameter 76 is set to 1.

The value defined by the inverter on the basis of the motor's rated data corresponds to 100% (default). If the drive should oscillate at this setting, this value must be reduced until stable running is guaranteed under load and when idling.

ATTENTION!

Drive oscillations may lead to overloading of the braking chopper or the current limit may be exceeded. Therefore, this parameter must be optimized conscientiously and must be checked for oscillation-free running over the entire speed and load range.

NOTE: this parameter is not relevant during operation with speed control and <u>SLV</u>^{\odot} applications. For these applications, the speed controller is adapted by way of the parameter **F6** – **Rotor time constant setting**.

◊ Value range: 0.0–500.0%

78 – Language

The display can be adapted to the respective national language here.

0	German
1	English

◊ Value range: see Table

Default Europe: 0 Default USA: 1 (see also parameter EA)

Default: 100.0%

SL / FO / SLV / EC - OE

79 – PWM frequency

Setting the PMW frequency (clock frequency of the power output stages). The inverters are thermally designed for a rated clock frequency of 5 kHz (size II...VI) or 2 kHz (size VII–IX). Greater clock frequencies can lead to an excess temperature cut-off, depending on the local cooling factors.

NOTE: Especially in the lower speed range, the PWM frequency is influenced by parameter **FB – PWM frequency slaving**. Above f = 4.50 kHz, a new voltage vector is only computed in every second PWM cycle, above f = 9.00 kHz, a new voltage vector is only computed in every fourth PWM cycle.

The following parameters are recomputed automatically when this parameter is changed:

	Parameter F8 – Current controller gain Parameter F9 – Specific current controller reset time	
\diamond	Value range: 2.00–15.00 kHz (Size IIVI)	Default: 4.50 kHz
\diamond	Value range: 2.00 kHz (Size VIIIX)	Default: 2.00 kHz

 Parameter Description
 04.08.05

 UD 7000 — 1.5–355.0
 07_GB_T2

SL / FO / SLV / EC

Default: 0 SL – OE

7A – Braking resistor power

Continuous rating of the internal or external braking resistor. If the thermal limit is exceeded, a warning is issued initially followed by an error message. Controlled deceleration occurs as the response to the error.

As standard, the inverters are equipped with 75 Ω (Sizes II–III) and also 20 Ω (Sizes IV–VI) braking resistors. The use of resistors with a lower resistance may lead to the "Overcurrent" fault. Resistors with a higher resistance do not make full use of the inverter's available braking power.

Protection of the braking resistor:

A thermal model of the braking resistor runs in the microcontroller. This model can, however, protect the resistor effectively only if the data of parameters 7A, 7D and 7E has been specified correctly. The thermal load limit (W_{max} (maximum energy [W])) of the connected resistor is calculated from parameter **7D** – **Permissible heating time of braking resistor** (T_{max}), the DC link voltage ($V_DC_{link} = 565$ VDC nominal) and the braking resistance (parameter **7E** – **Connected braking resistor** (R_B)).

$$W_{max} = \frac{V_{-}DC_{nom}^{2}}{R_{B}} \times T_{max}$$

The transistor On time and the current DC link voltage are allowed for calculating the energy currently consumed.

The resistor must have the following minimum values for the individual inverter sizes:

SIZE	MAXIMUM CURRENT OF BRAKE CHOPPER	BRAKE RESISTOR (MINIMUM VALUE)
II	10 A	75 Ω
III	15 A	50 Ω
IV	50 A	16 Ω
V	75 A	10 Ω
VI	75 A	10 Ω

ATTENTION!

If unrealistically high continuous power loss values are specified or if the protection function is deactivated with parameter 7E – **Connected braking resistor** despite the fact that a braking resistor is present or the value is specified incorrectly, protection of the resistor is not guaranteed and this entails the risk of overheating or fire.

◊ Value range: 0.00–50.00 kW

Default: 0.08 kW

7B – Increment motor potentiometer speed

This parameter determines the rate of change of the frequency factor (parameter 33) if input PS1 is programmed for one of the functions x11 or x12 (incrementing the frequency factor) via parameter 99. If the value 10 s is programmed for the parameter, for example, the input must be activated for 10 s in order to change the frequency factor by 100%.

◊ Value range: 0.1–640.0 s

7C - Decrement motor potentiometer speed

This parameter determines the rate of change of the frequency factor (parameter 33) if input PS2 is programmed for one of the functions x11 or x12 (decrementing the frequency factor) via parameter 9A. If the value 10 s is programmed for the parameter, for example, the input must be activated for 10 s in order to change the frequency factor by 100%.

◊ Value range: 0.1–640.0 s

Default: 10.0 s

Default: 10.0 s

SL/FO/SLV/EC-OE

04.08.05	Parameter Description	2 02
07_GB_T2	UD 7000 — 1.5–355.0	2-83

HINT!

SL / FO / SLV / EC – OE

SL/FO/SLV/EC

Default: 2 s

SL/FO/SLV/EC

SL/FO/SLV/EC

7D – Permissible heating time of braking resistor

Maximum time during which the connected braking resistor may be operated on a voltage of $V_{DC \text{ link}} = 540 \text{ V}$ (refer also to the description of the parameter **7A** – **Braking resistor power**).

ATTENTION!

ATTENTION!

entails the risk of overheating or fire (see also parameter **7A** – **Braking resistor power**). If external resistors of other suppliers are used, please enquire as regards the maximum permitted heating time.

If incorrect values are specified, protection of the resistor is no longer guaranteed and this

♦ Value range: 1–100 s

7E – Connected braking resistor

Resistance value of the connected braking resistor. If no braking resistor is connected, the maximum value must be entered so as to preclude the possibility of error messages. The braking chopper monitoring function is then deactivated (see also description of parameter **7A – Braking resistor power**).

If incorrect values are specified or if the protection function is deactivated for this parameter despite the fact that a braking resistor is present, this entails the risk of overheating or fire. Setting 1000 Ohms corresponds to "braking resistor protection deactivated".

NOTE: note the minimum values of the braking resistance (see parameter 7A). The unit Ω is denoted as "R".

 \diamond Value range: 15–1000 Ω

Default: 75 Ω (for inverter power rating up to 11 kW) 20 Ω (for inverter power rating upwards of 15 kW)

7F – Control method

The sine vector method generates a sinusoidal output voltage that is largely devoid of harmonics and, in doing so, it makes the fullest possible use of the line voltage fed in. With trapezoidal control, even higher output voltages can be generated than when using the sine vector method, but with a simultaneously higher amount of harmonics. The subharmonic method supplies lower output voltages than the sine vector method. Here, the motor's star point is at a constant potential.

0 Subharmonic method					
1	Sine vector modulation				
2	Trapezoidal control				

◊ Value range: see Table

8.8 Group 8 – Protective Functions

81 – MOL input function selection

The resistor of the connected motor PTCs or clixon is measured via the MOL input, and various actions are performed. The measuring range is $0-5 \text{ k}\Omega$.

0	Connection of clixon.
	The inverter is disabled (coast stop) when the clixon is triggered. Disabling occurs
	by hardware linking when 4.1 k Ω is exceeded (pure contact function). This triggers
	error message 5 "MOL contact open/I ² t monitoring of motor is triggered".

Default: 1

SL/FO/SLV/EC

	Connection of a single PTC. If 1.5 k Ω is exceeded, controlled deceleration takes place. If a resistor value of 4.1 k Ω is exceeded, the end phase is disabled by a hardware link (coast stop). Error message 5 "MOL contact open/I ² t monitoring of motor is triggered" is triggered in both cases.
2	Connection of a triple PTC. If 3.0 k Ω is exceeded, controlled deceleration takes place. The end phase is disabled by a hardware link (coast stop) if a resistor value of 4.1 k Ω is exceeded. Error message 5 "MOL contact open/l ² t monitoring of motor is triggered" is triggered in both cases.
	Connection of an EMERGENCY STOP switch. The inverter is disabled (coast stop) when the switch is opened. Error message 5 "MOL contact open/I ² t monitoring of motor is triggered" does not appear and does not have to be acknowledged.

♦ Value range: see Table

Default Europe: 2 Default USA: 0 (see also parameter EA)

SL/FO/SLV/EC

SL/FO/SLV/EC

82 – MOL input display (read-only)

Display of the resistance measured at the MOL input as a percentage of the maximum value. If 100% is displayed, a resistance value of 5 k Ω is present at the terminals.

♦ Value range: 0–100%

83 - Restart after fault definition

Stipulation as to what errors are to result in a restart of the inverter. A restart means automatic restart of the inverter after an error occurs. For this purpose, the error which has occurred must be identified as a restart-enabled error (with the aid of this parameter), the Enable must have been issued (FWD resp. REV terminal is activated) and the maximum number of restarts (parameter 84) may not yet have been reached. The Restart function is possible only in REMOTE mode.

The notation is hexadecimal (see presetting example). Each fault is assigned one bit in the parameter value. See Chapter 8.17, Page 2-122, for details of allocation of the fault number and fault type.

8240

								02	40							
Display _{Hex}		8	3			1	2			4	4			()	
Binary _{Bin}	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
Bit No.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function	Fault 15	Fault 14	Fault 13	Fault 12	Fault 11 ⁽¹⁾	Fault 10	Fault 9	Fault 8	Fault 7 ⁽¹⁾	Fault 6	Fault 5	Fault 4	Fault 3	Fault 2	Fault 1	Fault 0

(1) If these errors occur, no restart is possible. The corresponding bits should thus be set to zero.

04.08.05	Parameter Description
07_GB_T2	UD 7000 — 1.5–355.0

PROGRAMMING EXAMPLE:

A restart is to be performed after error 6, 9 and 15. A "0" or a "1" must now be inserted for each error (error 0 to error 15) in the order shown in the illustration above (starting at the left). The digit "0" means "do not perform restart" and the digit "1" means "perform restart". Enter the hexadecimal value using a pocket calculator which can convert binary numbers to hexadecimal values or using a table (see the conversion table on Page 2-124 in this description). In this example, the binary number "1000 0010 0100 0000" (the "1" at the 1st position from the left stands for error 15 (bit 15), at the 7th position for error 9 (bit 9) and at the 10th position (bit 6) for error 6) and the hexadecimal value to be entered is "8240".

NOTE:

The values between FFF_{Hex} and 8000_{Hex} are reached by pushing the DOWN key \checkmark , departing from "0". The values in between 0 and 7FFF_{Hex} are reached with the UP key \blacktriangle .

- ♦ Value range: 8000_H-FFFF_H, 0000_H-7FFF_H
- 84 Number of restarts

Maximum number of restarts performed after occurrence of one of the errors stipulated in parameter 83. Programming the value zero means that no restart is attempted under any circumstances. The stored number of restarts performed to date is reset after 10 minutes of error-free operation.

♦ Value range: 0–8

85 – Restart delay

If the Restart function is activated (see parameter 83) and the maximum permitted number of restart attempts (parameter 84) has not yet been exceeded, an automatic restart of the inverter is attempted after expiry of the time stipulated in this parameter if an error defined in parameter 83 occurs.

♦ Value range: 0.1–60.0 s

86 - V_{IC} offset BC to power supply

Under one of the following conditions, the utilization point of the brake chopper (V_{BC}) is a fixed value:

- "AC Line voltage to low" error status.
- DC feed of the inverter.
- Optimal motor braking depending on the intermediate circuit voltage (cf. also parameter 72 – Ramp function selection.

Then the following applies: $V_{BC,ON} = 750$ V.

If none of these conditions are met, the utilization point of the brake chopper (V_{BC}) is as follows depending on the power supply:

 V_{BC} = (1.414 × V_{supply}) + parameter 86 (however, a minimum of 600 V and a maximum of 760 V).

NOTE:

As regards the hardware, when V_{IC} = 790 volts, the BC is automatically switched on as an additional measure.

Also in connection with hardware, when V_{IC} = 815 volts, the output stage is blocked.

♦ Value range: 50–200 VDC

Default: 100 VDC

2.96	Parameter Description	04.08.05
2-86	UD 7000 — 1.5–355.0	07_GB_T2

HINT!

SL/FO/EC

Default: 0

Default: 0000_H

SL/FO/SLV/EC

Default: 10.0 s

SL / FO / SLV / EC

ATTENTION!

SL/FO/SLV/EC-OE

87 – Password

Entry of a password allows unauthorised access to the parameters to be prevented. After entry of a password, the user is prompted to enter the password the first time the PROG key is pressed after power-on – instead of reverting to Parameter Input mode. The password can now be set directly with keys UP/DOWN and acknowledged with key ENTER. If the password has been entered correctly, you will see "*** CODE OK. *** " on the display. Otherwise, you will see " ** WRONG CODE ** ". Password zero deactivates the function.

♦ Value range: 0–9999

88 - Thermal motor time constant

With the aid of the time constant, the inverter computes a thermal motor model on the basis of a delay element. A warning or an error message is triggered if the thresholds are exceeded. Controlled slowing down is the reaction to the error message.

This function is unable to ensure 100 percent thermal motor protection since the individual ambient conditions are ignored. However, if this is required, use of a motor PTC thermistor detector is recommended.

♦ Value range: 1–120 min Default: 15 min

 – I²t warning threshold 	SL/I

See description under parameter 88.

◊ Value range: 10.0–200.0%

8A – I²t error threshold

89

See description under parameter 88.

♦ Value range: 10.0–200.0%

8B – Maximum permissible ramp extension in the event of stop SL / FO / SLV / EC

To enhance operating reliability, a monitoring function has been integrated for the stop operation which makes sure that a drive that has got out of control will stop after a finite time. The inverter checks whether the drive has stopped within a parameterisable time, as otherwise braking is initiated immediately after the expiry of this time by means of the DC brake and then the output stages are deactivated. The stop monitoring function is configured by way of this parameter.

- The ramp time t_{ramp} that is used for checking is always the greater of the two run down times from ramp sets 1 and 2 (parameter 26 or 28).
 - The current frequency setpoint is taken into account on calculation of the time-out tout.

$$t_{out} = t_{ramp} \times \frac{Parameter 8B \%}{100\%} \times \frac{|f_{setpoint}|}{f_{max}}$$

 VALUE
 MEANING

 0
 Monitoring function off. For example, the function can be deactivated for applications in which braking is to take place at the moment limit.

 50–99%
 Only effective when the active ramp set contains the smaller of the two run down times; otherwise 100% is calculated internally.

04.08.05	Parameter Description	2-87
07_GB_T2	UD 7000 — 1.5–355.0	2-07

Default: 0

Default: 115.0% SL / FO / SLV / EC

=0 / SLV / EC

Default: 120.0%

```
SL/FO/SLV/EC
```

VALUE	MEANING	
	Time-out $t_{out} = t_{ramp} \times \frac{Parameter 8B \%}{100\%} \times \frac{ f_{setpoint} }{f_{max}}$ The time-out determined for the current setpoint can be checked in the parameter 8C. NOTE: t_{out} is calculated up to a time less than 31 seconds with a resolution of 100 ms; in the event of higher values it is rounded up to full seconds.	

ATTENTION!

It is possible that the motor can no longer be stopped if the monitoring function is deactivated and the parameterisation is incorrect. In any case, the monitoring function should only be deactivated at the end of a commissioning operation and, at the same time, an EMER-GENCY STOP (inverter lock) should be wired at a binary input (parameter 98–9B) or the MOL terminals (parameter 81).

EXAMPLE:

The drive is currently running with 10 Hz, the maximum frequency is 50 Hz, ramp extension is set to 400%, the deceleration ramp 1 (parameter 26) is set to 2.5 s and the deceleration ramp 2 (parameter 28) is set to 5 seconds. Under normal conditions (no load limit), for coasting down from 10 Hz to standstill the drive needs

Deceleration time_{10 Hz} = $\frac{2.5 \text{ s} \times 10 \text{ Hz}}{50 \text{ Hz}} = 0.5 \text{ s}$

The "Maximum permissible ramp extension" is set to 400%, i.e. the drive is given four times the time for stopping (**but calculation is based on the longer ramp 2**):

$$t_{out} = \frac{5 \text{ s} \times 400\% \times 10 \text{ Hz}}{100\% \times 50 \text{ Hz}} = 4 \text{ s}$$

If the motor has not yet stopped at this time, the inverter switches off the output stages and issues error message 12 (Auto-Stop).

Definitions

- The minimum time-out is set to 500 ms.
- When ramps are deactivated, a constant substitute ramp time t_{ramp} = 5 s is used to calculate the time-out t_{out}.

Error message

• The error message 12 "Auto-Stop" is issued after deactivation of the output stages by the monitoring function.

Remedy

1) The drive's parameter settings are wrong:

- Motor data incorrectly entered (Frequent error: when using an induction motor, users enter the synchronous speed).
- Test mode not run (see parameter 2A).
- Error during manual controller adjustment (speed, position, current controller), proportional gain frequently too high.
- After change-over of the application (see parameter 2C), in any case the test mode must be run again; controllers must be readjusted; begin with the default values again! Starting the feedback-free <u>SLV</u>² application with the controller settings that were optimized for the field-oriented drive (working feedback) is particularly problematic.

~ 00	Parameter Description	04.08.05
2-88	UD 7000 — 1.5–355.0	07_GB_T2

- A further conceivable reason: Discrepancies in the active parameter set when using the "parameter set changeover" function.
- 2) If the drive has been commissioned properly:
 - It is overloaded and therefore no longer manages to stop the motor within the timeout t_{out} set in the parameter 8B – Maximum permissible ramp extension in the event of stop.
 - Check ramp times (group 2).
 - Check torque limits (group 5).
 - Depending on the application the parameter 8B Maximum permissible ramp extension in the event of stop must be set to max. 10000% or to 0% to deactivate the monitoring function.

NOTE: an entered value between 1 and 49 is overwritten automatically with 0.

Value range: 0 or 50–10000%

Default: 200%

8C – Current time-out t _{out} for stop ramp	SL / FO / SLV / EC
--	--------------------

Time-out t_{out} for stopping.

To enable a check, the time-out t_{out} calculated with the aid of the parameter 8B is displayed here.

Value range: 0.1–999.9 s

8D – Reference value for load-dependent switching of control outputs SL / FO / SLV / EC

Each of the UD 7000 control outputs (see description of parameters 92–96) can be programmed to the function "x31". The parameter 8D determines the output torque (in percent of the rated torque) the output switches at. For example, this function makes it possible to give the signal that 120% of the motor torque have been reached to external control units, and additional protective functions can be realised.

Depending on the mode, the value for the output torque calculated by the inverter can vary. A filtered value is therefore taken as reference value for the above-mentioned comparison. The filtering is made with a value determined through the parameter **A7 – Filtering time constant of displayed values in parameter group 0**. This filtering avoids hypersensitivity of the output (short peaks on the calculated moment are filtered out).

This parameter is only visible when at least one of the outputs has been programmed for this function.

◊ Value range: 0–500.0%

HINT!

Default: 100.0%

8E – Selection speed control (read-only)

With this parameter, you can select whether error message 8 (Speed observer) should only appear when the rotor speed is too high or also when, in addition to the high rotor speed, an excessive control error has occurred.

Control of overspeed only, i.e. error 8 is caused only when the actual speed n_{act} is higher than the maximum permissible speed n_{max}. The maximum permissible speed n_{max} results from the maximum frequency f_{max} (parameter 23) multiplied by 1.2, considering also the number of motor pole pairs z_p:
 n_{max} = 1.2 × ^fmax/z_p
 The overspeed (see selection 0) and the adherence to an adjustable control error are monitored. ¹)

04.08.05	Parameter Description	2 00
07_GB_T2	UD 7000 — 1.5–355.0	2-89

 The "Speed observer" error appears when, during speed regulation, the control error between the reference and actual frequency is greater than a comparative value selected. This comparative value is either the parameter 47 – Hysteresis band for blocking frequencies or (when parameter 47 has been set to zero) twice the nominal slip s_N of the motor. The nominal slip of the motor is calculated by the inverter as follows:

$$s_{N} = f_{N} - \frac{n_{N}}{60\frac{s}{\min}} \times z_{p}$$

 $s_n = nominal slip.$

- $f_N = (motor)$ nominal frequency (parameter 12).
- n_N = nominal speed (parameter 14).
- z_p = number of pole pairs.

EXAMPLE:

A four-pin standard motor ($z_p = 2$) with a nominal frequency $f_N = 50$ Hz has a nominal speed of $n_N = 1425 \text{ min}^{-1}$. The maximum frequency (parameter 23) is 100 Hz. The value given for parameter 8E is 1. Parameter 47 has been set to 0 Hz, i.e. the comparative value is twice the nominal slip and is calculated as follows:

$$s_{N} = 50 \text{ Hz} - \frac{1425 \text{ min}^{-1}}{60 \frac{\text{s}}{\text{min}}} \times 2 = 2.5 \text{ Hz} \quad \text{Comparative value} = 2 \times \text{sN} = 2 \times 2.5 \text{ Hz} = 5 \text{ Hz}.$$

The maximum speed allowed on the motor shaft is derived from

$$n_{max} = 1.2 \times \frac{f_{max}}{z_p} = 1.2 \times \frac{100 \text{ Hz}}{2} = 60 \text{ Hz}$$

Therefore, error 8 "Speed observer" is triggered when the control error is greater than 5 Hz or the rotor speed is greater than 60 Hz.

NOTE:

Parameter 8E only appears with speed control applications (parameter 2C) and with ramps switched on (parameter **72** – **Ramp function selection**). For synchronous motors, the nominal slip s_N is always zero. Therefore, in the case of EC applications, zero cannot be the value assigned to parameter **47** – **Hysteresis band for blocking frequencies**. Parameter **47** can also be used for other functions, provided that the particular value can be set for all functions.

◊ Value range: see Table

Default: 0

SL / FO / SLV / EC

8.9 Group 9 – Binary Inputs/Outputs

91 - Function of inputs FWD and REV

This parameter defines the functions of the FWD and REV terminal inputs.

0	FWD: start/stop. REV: selection of the direction of rotation (active: left rotation).
1	FWD: start/stop, right rotation. REV: start/stop, left rotation. ⁽¹⁾

(1) If both FWD and REV are active, this is interpreted as a STOP command.

♦ Value range: see Table

Default: 1

2 00	Parameter Description	04.08.05
2-90	UD 7000 — 1.5–355.0	07_GB_T2

92 – Output ST1 function selection	SL / FO / SLV / EC
 Value range: see table under parameter 96 	Default: 3
93 – Output ST2 function selection	SL / FO / SLV / EC
Value range: see table under parameter 96	Default: 102
94 – Output ST3 function selection	SL / FO / SLV / EC
Value range: see table under parameter 96	Default: 10
95 – Output ST4 function selection	SL / FO / SLV / EC
◊ Value range: see table under parameter 96	Default: 115
96 – Relay output function selection	SL / FO / SLV / EC

The following description applies to parameters 92–95 also.

x00		Inactive	
x01		Inverter OK (Unit works faultless)	
x02		Inverter output frequency higher than rated motor slip frequency; calculated on the basis of the rated speed specified in parameter 14	
x03		Inverter output frequency greater than 0.5 Hz in the left or right-hand direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole pair number >0.5 Hz	
x04		Inverter output frequency 0 Hz. Operation with feedback: motor shaft rotation frequency/motor pole pair number = 0 Hz	
x05	•	Stator frequency = frequency setpoint. Operation with feedback: frequency setpoint = actual frequency	
x06		Inverter output frequency greater than fixed frequency 2 (parameter 42) in the left or right-hand direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole pair number >fixed frequency 2	
x07		Inverter output frequency higher than fixed frequency 3 (parameter 43) in the left or right-hand direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole pair number >fixed frequency 3	
x08		Set torque limit reached (parameters 58–5B)	
x09		Output controlled through serial interface (SIO)	
x10		Motor temperature has been exceeded (MOL open / i ² t, error message 5)	
x11		Reserved N/A	
x12		Maximum frequency (parameter 23) reached	
x13		Minimum frequency (parameter 24) reached	
x14		Setpoint current loop has discontinuity (only in the case of setpoint input 2– 10 V or 4–20 mA; is signalled if 2 V resp. 4 mA is undershot, warning mes- sage 27)	
x15		The Digital frequency output function is possible only in conjunction with ST4. In the case of applications without feedback: The output frequency corresponds to the stator frequency (in Hz) \times n (n = parameter 3E). Operation with feedback: The output frequency corresponds to the rotor rotational frequency (in Hz) \times n (n = parameter 3E)	

04.08.05	Parameter Description	2-91
07_GB_T2	UD 7000 — 1.5–355.0	2-91

x16 The Digital Frequency Output function is possible only in conjunction with ST4. The output frequency corresponds to the frequency setpoint × n (n = parameter 3E) x17 Inverter is n LOCAL mode (LOC) x18 Inverter is operating in speed control mode. Inactive: inverter is operating unregulated Inverter generates REV rotation field x20 The inverter is carrying out a test mode (see also parameter 2A and parameter 43) in right-hand rotation direction. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 (parameter 43) in counter-clockwise direction of rotation x22 Inverter output frequency is greater than fixed frequency 3 (parameter 43) in counter-clockwise direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 (parameter 43) in counter-clockwise direction of rotation. Queration integrator has reached reference value x24 Reserved N/A x25 Set inverter frequency after ramp generator higher than fixed frequency 2 (parameter 42) in the left or right direction of rotation x26 Only for applications with a speed controller: Control error between set and actual frequencies is higher than a selected comparison value. (1) x27 Output stage enabled x28 Reserved N/A x29 Reserved N/A x30 Function for control of a holding brake. The output becomes active if 75% of the field		1	
 eter 3E) Inverter is in LOCAL mode (LOC) Inverter is operating in speed control mode. Inactive: inverter is operating unregulated Inverter generates REV rotation field The inverter is carrying out a test mode (see also parameter 2A and parameter 88–9B, Setting 9 "zero pulse search") Inverter output frequency greater than fixed frequency 3 (parameter 43) in right-hand totation direction. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 (parameter 43) in counter-clockwise direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 (parameter 43) in counter-clockwise direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 in counter-clock-wise direction of rotation. Inverter requency reached. Acceleration / deceleration integrator has reached reference value Set inverter frequency after ramp generator higher than fixed frequency 2 (parameter 42) in the left or right direction of rotation Set inverter frequency after ramp generator higher than a selected comparison value. (1) Output stage enabled Reserved N/A Reserved N/A Reserved N/A Reserved N/A Function for control of a holding brake. The output becomes active if 75% of the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD holding time has elapsed after a STOP command (parameter 64). The output shows that a certain output torque has been exceeded. The parameter 8D – Reference value for load-dependent switching of control outputs determines the output torque (in per cent of the rated torque) the output switches at. For example, this function makes it possible to give the signal that a certain motor torque has been reached to external control units. The	x16		ST4.
 x18 Inverter is operating in speed control mode. Inactive: inverter is operating unregulated x19 Inverter generates REV rotation field x20 The inverter is carrying out a test mode (see also parameter 2A and parameter 98–98, Setting 9 "zero pulse search") x21 I Inverter output frequency greater than fixed frequency 3 (parameter 43) in right-hand rotation direction. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 (parameter 43) in counter-clockwise direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 (parameter 43) in counter-clockwise direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 in counter-clockwise direction of rotation. x23 Top frequency reached. Acceleration / deceleration integrator has reached reference value x24 Reserved N/A x25 S Set inverter frequency after ramp generator higher than fixed frequency 2 (parameter 42) in the left or right direction of rotation x26 Only for applications with a speed controller: Control error between set and actual frequencies is higher than a selected comparison value. (1) x27 Output stage enabled x28 Reserved N/A x30 Function for control of a holding brake. The output becomes active if 75% of the field build-up time (parameter 66) has elapsed and it becomes inactive if 64). x31 • The output shows that a certain output torque has been exceeded. The parameter 8D - Reference value for load-dependent switching of control output sdetermines the output torque (in per cent of the rated torque) the output switches at. For example, this function makes it possible to give the signal that a certain motor torque has been reached to external control units. 0xx Low active level 1xx 1x High active level 1xx 3xx Output indicates that the selected condit			
Inactive: inverter is operating unregulated x19 Inverter generates REV rotation field x20 The inverter is carrying out a test mode (see also parameter 2A and parameter 98–9B, Setting 9 "zero pulse search") x21 Inverter output frequency greater than fixed frequency 3 (parameter 43) in right-hand rotation direction. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 (parameter 43) in counter-clockwise direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 in counter-clock-wise direction of rotation x22 Inverter output frequency is greater than fixed frequency 3 (parameter 43) in counter-clockwise direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 in counter-clockwise direction of rotation x23 Top frequency reached. Acceleration / deceleration integrator has reached reference value x24 Reserved N/A x25 Set inverter frequency after ramp generator higher than fixed frequency 2 (parameter 42) in the left or right direction of rotation x26 Only for applications with a speed controller: Control error between set and actual frequencies is higher than a selected comparison value. (1) x27 Output stage enabled x28 Reserved N/A x30 Function for control of a holding brake. The output becomes active if 75% of the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD h	x17		Inverter is in LOCAL mode (LOC)
 x20 The inverter is carrying out a test mode (see also parameter 2A and parameter 98–9B, Setting 9 "zero pulse search") x21 Inverter output frequency greater than fixed frequency 3 (parameter 43) in right-hand rotation direction. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 (parameter 43) in counter-clockwise direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 (parameter 43) in counter-clockwise direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 in counter-clockwise direction of rotation x23 Top frequency reached. Acceleration / deceleration integrator has reached reference value x24 Reserved N/A x25 Set inverter frequency after ramp generator higher than fixed frequency 2 (parameter 42) in the left or right direction of rotation x26 Only for applications with a speed controller: Control error between set and actual frequencies is higher than a selected comparison value. (1) x27 Output stage enabled x28 Reserved N/A x29 Reserved N/A x30 Function for control of a holding brake. The output becomes active if 75% of the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD holding time has elapsed after a STOP command (parameter 64). x31 The output shows that a certain output torque has been exceeded. The parameter 8D – Reference value for load-dependent switching of control outputs determines the output torque has been exceeded. The parameter 8D – Reference value for load-dependent switching of control output set estimates the output torque has been reached to external control units. 0xx Low active level 1xx High active level 1xx High active level 1x	x18		
 eter 98–9B, Setting 9 "zero pulse search") x21 Inverter output frequency greater than fixed frequency 3 (parameter 43) in right-hand rotation direction. Operation with feedback: motor shaft rotation frequency/motor pole number > fixed frequency 3 in right-hand direction of rotation Inverter output frequency is greater than fixed frequency 3 (parameter 43) in counter-clockwise direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole number > fixed frequency 3 in counter-clock-wise direction of rotation. x23 Inverter output frequency is greater than fixed frequency 3 in counter-clock-wise direction of rotation. x23 Top frequency reached. Acceleration / deceleration integrator has reached reference value x24 Reserved N/A Set inverter frequency after ramp generator higher than fixed frequency 2 (parameter 42) in the left or right direction of rotation x26 Only for applications with a speed controller: Control error between set and actual frequencies is higher than a selected comparison value. (1) x27 Output stage enabled x28 Reserved N/A x29 Reserved N/A x30 Function for control of a holding brake. The output becomes active if 75% of the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD holding time has elapsed after a STOP command (parameter 64). x31 The output shows that a certain output torque has been exceeded. The parameter 8D – Reference value for load-dependent switching of control outputs determines the output torque (in per cent of the rated torque) the output switches at. For example, this function make	x19	•	Inverter generates REV rotation field
 right-hand rotation direction. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 in right-hand direction of rotation Inverter output frequency is greater than fixed frequency 3 (parameter 43) in counter-clockwise direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 in counter-clockwise direction of rotation Top frequency reached. Acceleration / deceleration integrator has reached reference value Reserved N/A Set inverter frequency after ramp generator higher than fixed frequency 2 (parameter 42) in the left or right direction of rotation Set inverter frequency after ramp generator higher than a selected comparison value. ⁽¹⁾ Output stage enabled Reserved N/A Function for control of a holding brake. The output becomes active if 75% of the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD holding time has elapsed after a STOP command (parameter 64). The output shows that a certain output torque has been exceeded. The parameter 8D – Reference value for load-dependent switching of control outputs determines the output torque in per cent of the rated torque) the output witches at. For example, this function makes it possible to give the signal that a certain motor torque has been reached to external control units. Low active level High active level Migh active level Coutput indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with in the table (active level Low)<th>x20</th><th></th><th></th>	x20		
 counter-clockwise direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 in counter-clock-wise direction of rotation x23 Top frequency reached. Acceleration / deceleration integrator has reached reference value x24 Reserved N/A x25 Set inverter frequency after ramp generator higher than fixed frequency 2 (parameter 42) in the left or right direction of rotation x26 Only for applications with a speed controller: Control error between set and actual frequencies is higher than a selected comparison value. ⁽¹⁾ x27 Output stage enabled x28 Reserved N/A x29 Reserved N/A x30 Function for control of a holding brake. The output becomes active if 75% of the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD holding time has elapsed after a STOP command (parameter 64). x31 The output shows that a certain output torque has been exceeded. The parameter 8D – Reference value for load-dependent switching of control outputs determines the output torque (in per cent of the rated torque) the output switches at. For example, this function makes it possible to give the signal that a certain motor torque has been reached to external control units. 0xx Low active level 1xx High active level 2xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with ■ in the table (active level Low) 3xx 	x21		right-hand rotation direction. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 in right-hand direction of ro-
x24 Reserved N/A x25 ■ ● Set inverter frequency after ramp generator higher than fixed frequency 2 (parameter 42) in the left or right direction of rotation x26 Only for applications with a speed controller: Control error between set and actual frequencies is higher than a selected comparison value. (1) x27 Output stage enabled x28 Reserved N/A x29 Reserved N/A x30 Function for control of a holding brake. The output becomes active if 75% of the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD holding time has elapsed after a STOP command (parameter 64). x31 ■ ● The output shows that a certain output torque has been exceeded. The parameter 8D – Reference value for load-dependent switching of control outputs determines the output torque (in per cent of the rated torque) the output switches at. For example, this function makes it possible to give the signal that a certain motor torque has been reached to external control units. 0xx Low active level 1xx High active level 2xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with ■ in the table (active level Low) 3xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with ■ in the table (active level Low)	x22		counter-clockwise direction of rotation. Operation with feedback: motor shaft rotation frequency/motor pole number >fixed frequency 3 in counter-clock-
 x25 Set inverter frequency after ramp generator higher than fixed frequency 2 (parameter 42) in the left or right direction of rotation x26 Only for applications with a speed controller: Control error between set and actual frequencies is higher than a selected comparison value. ⁽¹⁾ x27 Output stage enabled x28 Reserved N/A x29 Reserved N/A x30 Function for control of a holding brake. The output becomes active if 75% of the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD holding time has elapsed after a STOP command (parameter 64). x31 The output shows that a certain output torque has been exceeded. The parameter 8D – Reference value for load-dependent switching of control outputs determines the output torque (in per cent of the rated torque) the output switches at. For example, this function makes it possible to give the signal that a certain motor torque has been reached to external control units. 0xx Low active level 1xx High active level 2xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with ■ in the table (active level Low) 	x23		
 (parameter 42) in the left or right direction of rotation x26 Only for applications with a speed controller: Control error between set and actual frequencies is higher than a selected comparison value. ⁽¹⁾ x27 Output stage enabled x28 Reserved N/A x29 Reserved N/A x30 Function for control of a holding brake. The output becomes active if 75% of the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD holding time has elapsed after a STOP command (parameter 64). x31 The output shows that a certain output torque has been exceeded. The parameter 8D – Reference value for load-dependent switching of control outputs determines the output torque (in per cent of the rated torque) the output switches at. For example, this function makes it possible to give the signal that a certain motor torque has been reached to external control units. 0xx Low active level 1xx High active level 2xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with ■ in the table (active level Low) 3xx 	x24		Reserved N/A
 Control error between set and actual frequencies is higher than a selected comparison value. ⁽¹⁾ x27 Output stage enabled x28 Reserved N/A x29 Reserved N/A x30 Function for control of a holding brake. The output becomes active if 75% of the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD holding time has elapsed after a STOP command (parameter 64). x31 The output shows that a certain output torque has been exceeded. The parameter 8D – Reference value for load-dependent switching of control outputs determines the output torque (in per cent of the rated torque) the output switches at. For example, this function makes it possible to give the signal that a certain motor torque has been reached to external control units. 0xx Low active level 2xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with in the table (active level Low) 3xx 	x25		
x28 Reserved N/A x29 Reserved N/A x30 Function for control of a holding brake. The output becomes active if 75% of the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD holding time has elapsed after a STOP command (parameter 64). x31 ■ The output shows that a certain output torque has been exceeded. The parameter 8D – Reference value for load-dependent switching of control outputs determines the output torque (in per cent of the rated torque) the output switches at. For example, this function makes it possible to give the signal that a certain motor torque has been reached to external control units. 0xx Low active level 1xx High active level 2xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with ■ in the table (active level Low) 3xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with ■ in the table (active level Low)	x26		Control error between set and actual frequencies is higher than a selected
 x29 Reserved N/A x30 Function for control of a holding brake. The output becomes active if 75% of the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD holding time has elapsed after a STOP command (parameter 64). x31 ■ The output shows that a certain output torque has been exceeded. The parameter 8D - Reference value for load-dependent switching of control outputs determines the output torque (in per cent of the rated torque) the output switches at. For example, this function makes it possible to give the signal that a certain motor torque has been reached to external control units. 0xx Low active level 1xx High active level 2xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with ■ in the table (active level Low) 3xx 	x27		Output stage enabled
 x30 Function for control of a holding brake. The output becomes active if 75% of the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD holding time has elapsed after a STOP command (parameter 64). x31 The output shows that a certain output torque has been exceeded. The parameter 8D – Reference value for load-dependent switching of control outputs determines the output torque (in per cent of the rated torque) the output switches at. For example, this function makes it possible to give the signal that a certain motor torque has been reached to external control units. 0xx Low active level 1xx High active level 2xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with ■ in the table (active level Low) 3xx 	x28		Reserved N/A
 the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD holding time has elapsed after a STOP command (parameter 64). x31 The output shows that a certain output torque has been exceeded. The parameter 8D – Reference value for load-dependent switching of control outputs determines the output torque (in per cent of the rated torque) the output switches at. For example, this function makes it possible to give the signal that a certain motor torque has been reached to external control units. 0xx Low active level 1xx High active level 2xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with I in the table (active level Low) 3xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with I in the table (active level Low) 	x29		Reserved N/A
 rameter 8D - Reference value for load-dependent switching of control outputs determines the output torque (in per cent of the rated torque) the output switches at. For example, this function makes it possible to give the signal that a certain motor torque has been reached to external control units. 0xx Low active level 1xx High active level 2xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with I in the table (active level Low) 3xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with I in the table (active level Low) 	x30		the field build-up time (parameter 66) has elapsed and it becomes inactive if 50% of the CD holding time has elapsed after a STOP command (parameter
1xx High active level 2xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with ■ in the table (active level Low) 3xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with ■ in the table (active level Low)	x31		rameter 8D – Reference value for load-dependent switching of control outputs determines the output torque (in per cent of the rated torque) the out- put switches at. For example, this function makes it possible to give the signal
2xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with ■ in the table (active level Low) 3xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all functions which are identified with ■ in the table (active is OK; possible for all func	0xx		Low active level
is OK; possible for all functions which are identified with ■ in the table (active level Low) 3xx Output indicates that the selected condition is satisfied and that the inverter is OK; possible for all functions which are identified with ■ in the table (active	1xx		High active level
is OK; possible for all functions which are identified with ■ in the table (active	2xx		is OK ; possible for all functions which are identified with \blacksquare in the table (active
	3xx		is OK; possible for all functions which are identified with \blacksquare in the table (active

• The control output is **not** set if the inverter is in the DC mode or in a test mode (cf. parameter 2A or parameter 98–9B "zero pulse search"), and in the field build-up time.

2-92	Parameter Description	04.08.05
2-92	UD 7000 — 1.5–355.0	07_GB_T2

■ These functions of the control outputs can be logically combined with the condition "Inverter OK", i.e. the output is set if the selected condition (the last two digits) is satisfied and if the inverter is functioning without faults. Enter 2xx or 3xx depending on the desired active level.

(1) See parameters 47 und 8E, Pages 2-70 and 2-89.

EXAMPLE:

The value 225 is entered in parameter 96:

The relay output opens if the inverter is operating without faults and if the setpoint frequency is greater than the "fixed frequency 2" entered in parameter 42. However, the output does not open if a higher frequency is output by the inverter during measurement of the leakage inductance.

♦ Value range: see Table

Default: 101

07	Control of hinor	continues through CIO		
97	– Control of binary	/ outputs through SIO	SL/1	FO / SLV / EC – SC

To enable control of the binary outputs ST1–ST4 and REL through the serial interface, the respective output must be programmed to the "Control of the output through serial interface" function with the affiliated "Select function of output ..." selection parameter (parameters 92–96 set to x09).

Display _{Hex}		()			()				1			1	2	
Binary _{Bin}	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0
Bit No.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function	Not used	REL	ST4	ST3	ST2	ST1										

PROGRAMMING EXAMPLE:

The binary outputs REL (parameter 96) and ST2 (parameter 93) should be controlled via the serial port. A "0" or a "1" must now be inserted for each selection option (bits 0–15) in the order shown in the table above (starting at the left). Digit "0" corresponds to "not activated" and digit "1" corresponds to "activated". Value "0" must be inserted for bits 5 to 15 which are not used. The hexadecimal value must be entered using a pocket calculator which can convert binary numerical values to hexadecimal values or a table (see conversion table on Page 2-124 of this description). In this example, the binary number "0000 0000 0001 0010" (the "1" at the 12th position from the left stands for REL (bit 4) and at the 15th position stands for ST2 (bit 1)) and the hexadecimal value to be entered is "0012".

♦ Value range: 0000_H-001F_H

72

Default: 0000_H

98 – Run/Jog input function selection SL / FO / SLV / EC x00 Selection Jog mode (fixed frequency 1). The set value of the fixed frequency 1 can also be used as a Jog frequency. For this purpose, binary inputs R/J and PS3 must be activated, parameter 98 – Run/Jog input function selection must be programmed for function "Selection Jog mode" (setting x00) and LOCAL mode must be activated with parameter 9B (setting x06). The motor now runs in the corresponding direction at the set frequency 1 for as long as key FWD or REV is pressed. x01 Selection of ramp set 2 (acceleration and deceleration time 2); see also parameter

04.08.05	Parameter Description	2-93
07_GB_T2	UD 7000 — 1.5–355.0	2-93

x02	Selection of customer parameter set 1 (see note 1, Page 2-98)
x03	Selection of customer parameter set 2 (see note 1, Page 2-98)
x04	Inverter disabled (coast to stop)
x05	DC braking. The inverter reverts to a mode in which it injects into the motor a DC voltage which results in deceleration of the motor (DC braking). In this case, the corresponding direct current is monitored so that, at maximum, the current specified by parameter 63 – DC brake current is able to flow. The DC brake functions only as long as the output stages are enabled. This function may be selected only if parameter 2C – Application has been programmed to value "0" or "2"
x06	No function
x07	No function
x08	Deactivation of the position controller
x09	Zero pulse search master setpoint (only active in the stop state); see note 2, Page 2-99
x10	No function
x11	No function
x12	No function
x13	No function
x14	Deactivation of the master encoder for the synchronous system
x15	Suppression of positive counting pulses of the master encoder for the synchronous system. Only negative counting pulses of the master are active
x16	Suppression of negative counting pulses of the master encoder for the synchronous system. Only positive counting pulses of the master are active
x17	Inversion of the counting pulses of the master encoder
x18	Reserved N/A
x19	Acknowledge error state (see note 5, Page 2-100)
x20	Reserved N/A
0xx	NO contact trips the selected function (see note 4, Page 2-100)
1xx	NC contact trips the selected function (see note 4, Page 2-100)

The binary input R/J must not be triggered during execution of a test mode of operation (see parameter 2A).

◊ Value range: see Table

Default: 0

SL / FO / SLV / EC

99 – PS1 input function selection

x00	Bit 0 for selection of a fixed frequency $(0-7)$; if this function is not selected, the bit is evaluated as Zero (see parameter 41–46)
x01	Selection of ramp set 2 (acceleration and deceleration time 2)
x02	Selection of customer parameter set 1 (see note 1, Page 2-98)
x03	Selection of customer parameter set 2 (see note 1, Page 2-98)
x04	Inverter disabling (coast to stop)

x05	DC braking. The inverter reverts to a mode in which it injects into the motor a DC voltage which results in deceleration of the motor (DC braking). In this case, the corresponding direct current is monitored so that, at maximum, the current specified by parameter 63 – DC brake current is able to flow. The DC brake functions only as long as the output stages are enabled. This function may be selected only if parameter 2C – Application has been programmed to value "0" or "2"
x06	Incrementing of the frequency factor (parameter 33 or E3) with the active switching edge; see note 3, Page 2-100
x07	Incrementing of the frequency factor (parameter 33 or E3) in the active switching state every 64 ms; see note 3, Page 2-100
x08	Deactivation of the position control
x09	Zero pulse search master setpoint (only active in the STOP state); see note 2, Page 2-99
x10	No function
x11	Incrementing of the frequency factor (parameter 33 or E3) in an active switching state (motor potentiometer). The rate of change is defined by the parameter 7B. When a stop command is pending, the frequency factor is set to the low limit that is set in the parameter 38
x12	Incrementing of the frequency factor (parameter 33 or E3) in the active switching state (motor potentiometer). The rate of the change is defined by the parameter 7B; see note 3, Page 2-100
x13	Incrementing the parameter D3 – Zero angle with the active control state. The rate of change is determined by the parameter 7B. The zero angle is not stored in a non-volatile manner
x14	Deactivation of the master encoder for the synchronous system
x15	Suppression of positive counting pulses of the master encoder for the synchronous system. Only negative counting pulses of the master are active
x16	Suppression of negative counting pulses of the master encoder for the synchronous system. Only positive counting pulses of the master are active
x17	Inversion of the counting pulses of the master encoder
x18	Reserved N/A
x19	Acknowledge error state (see note 5, Page 2-100)
x20	Reserved N/A
0xx	NO contact trips the selected function (see note 4, Page 2-100)
1xx	NC contact trips the selected function (see note 4, Page 2-100)

The binary input PS1 must not be triggered during execution of a test mode of operation (see parameter 2A).

◊ Value range: see Table

SL / FO / SLV / EC

9A – PS2 input function selection	

	Bit 1 for selection of a fixed frequency $(0-7)$; if this function is not selected, the bit is evaluated as Zero (see parameter 41–46)
x01	Selection of ramp set 2 (acceleration and deceleration time 2)
x02	Selection of customer parameter set 1 (see note 1, Page 2-98)

04.08.05	Parameter Description	2-95
07_GB_T2	UD 7000 — 1.5–355.0	2-95

x03	Selection of customer parameter set 2 (see note 1, Page 2-98)
x04	Inverter disabling (coast to stop)
x05	DC braking. The inverter reverts to a mode in which it injects into the motor a DC voltage which results in deceleration of the motor (DC braking). In this case, the corresponding direct current is monitored so that, at maximum, the current specified by parameter 63 – DC brake current is able to flow. The DC brake functions only as long as the output stages are enabled. This function may be selected only if parameter 2C – Application has been programmed to value "0" or "2"
x06	Decrementing of the frequency factor (parameter 33 or E3) with the active switching edge; see note 3, Page 2-100
x07	Decrementing of the frequency factor (parameter 33 or E3) in the active switching state every 64 ms; see note 3, Page 2-100
x08	Deactivation of the position control
x09	Zero pulse search master setpoint (only active in the STOP state); see note 2, Page 2-99
x10	No function
x11	Decrementing of the frequency factor (parameter 33 or E3) in an active switching state (motor potentiometer). The rate of change is defined by the parameter 7C. When a stop command is pending, the frequency factor is set to the low limit that is set in the parameter 38
x12	Decrementing of the frequency factor (parameter 33 or E3) in the active switching state (motor potentiometer). The rate of the change is defined by the parameter 7C; see note 3, Page 2-100
x13	Decrementing of the zero angle (parameter 33) in an active switching state (shifting of the relative position between the master sensor and slave of the electrical shaft). The rate of change is defined by the parameter 7C. The zero angle is not stored in a power failsafe manner. The function can be used when the output stage is enabled and coupling is running
x14	Deactivation of the master encoder for the synchronous system
x15	Suppression of positive counting pulses of the master encoder for the synchronous system. Only negative counting pulses of the master are active
x16	Suppression of negative counting pulses of the master encoder for the synchronous system. Only positive counting pulses of the master are active
x17	Inversion of the counting pulses of the master encoder
x18	Reserved N/A
x19	Acknowledge error state (see note 5, Page 2-100)
x20	Reserved N/A
0xx	NO contact trips the selected function (see note 4, Page 2-100)
1xx	NC contact trips the selected function (see note 4, Page 2-100)

The binary input PS2 must not be triggered during execution of a test mode of operation (see parameter 2A).

♦ Value range: see Table

Default: 1

- PS3	input function selection SL / FO / SLV /
x00	Bit 2 for selection of a fixed frequency $(0-7)$; when this function is not selected, bit is evaluated as Zero (see parameter $41-46$)
x01	Selection of ramp set 2 (acceleration and deceleration time 2)
x02	Selection of customer parameter set 1 (see note 1, Page 2-98)
x03	Selection of customer parameter set 2 (see note 1, Page 2-98)
x04	Inverter disabling (coast to stop)
x05	DC braking. The inverter reverts to a mode in which it injects into the motor a D voltage which results in deceleration of the motor (DC braking). In this case, the responding direct current is monitored so that, at maximum, the current specified parameter 63 – DC brake current is able to flow. The DC brake functions only long as the output stages are enabled. This function may be selected only if par eter 2C – Application has been programmed to value "0" or "2"
x06	Activation of LOCAL mode (see note 6, Page 2-100)
x07	No function
x08	Deactivation of the position controller
x09	Zero pulse search master setpoint (only active in the STOP state); see note 2, Pa 2-99
x10	No function
x11	No function
x12	No function
x13	No function
x14	Deactivation of the master encoder for the synchronous system
x15	Suppression of positive counting pulses of the master encoder for the synchron system. Only negative counting pulses of the master are active
x16	Suppression of negative counting pulses of the master encoder for the synchron system. Only positive counting pulses of the master are active
x17	Inversion of the counting pulses of the master encoder
x18	Reserved N/A
x19	Acknowledge error state (see note 5, Page 2-100)
x20	Reserved N/A
0xx	NO contact trips the selected function (see note 4, Page 2-100)
1xx	NC contact trips the selected function (see note 4, Page 2-100)

The binary input PS3 must not be triggered during execution of a test mode of operation (see parameter 2A).

◊ Value range: see Table

Default Europe: 6 Default USA: 106

04.08.05	Parameter Description			
07_GB_T2	UD 7000 — 1.5–355.0	2-97		

NOTES ON PARAMETERS 98-9B:

Note 1 – Changing the customer parameter sets:

The UD 7000 features three equivalent parameter sets. Entered parameters and the results of measurements in the test mode are always only ever stored in the active parameter set (parameter **E9 – Customer parameter set**). Set 1 is active by default.

The active parameter set can be changed over either with the parameter **E9** – **Customer parameter set** or with the aid of **binary inputs**. To this end, one of the binary inputs R/J, PS1–PS3 must be programmed to the corresponding function (see parameters 98–9B). Parameter sets can only be changed over in the stop state.

As one parameter set will be adequate for the majority of applications, it is possible to use the second or third one to back up the optimized settings. For further information, refer to the description of the parameters **E9 – Customer parameter set** and **EA – Application-dependent defaults** in Section 8.14 of this parameter description.

The parameter sets may contain diverse applications (parameter 2C). If, in the event of a parameter set change-over, the unit detects that the new set contains a different application, the inverter is restarted directly after the set change-over in order to adapt the inverter environment.

ATTENTION!

If the change in the parameter set also results in a change in the motor data, the application number or other important motor quantities (stator and rotor resistance or controller parameters etc.), this may lead to a situation in which the inverter loses control of the motor. This is why a safety function is integrated (parameter 8B) which deactivates the inverter output stages in any case after a stop command once a certain time has elapsed.

Programming example: Switch-over of the set of parameters via 2 control inputs

HINT!

It is recommended to adjust the actual set of parameters to the demands first and, if required, to switch from set of parameters 1 to set of parameters 2 and so on with the parameter E9 (do not use control inputs R/J, PS 1, PS 2, PS 3).

Only when all parameters in all needed set of parameters are set, the switch-over of the set of parameters with the control inputs R/J, PS 1, PS 2, PS 3 can be done according to the programming example of the following list.

2 of the 4 control inputs are needed for the call-up of the set of parameters (example R/J and PS 1):

Terminal R/J	Parameter 98	Terminal PS1	Parameter 99	Choice of set of parameters
active-high	2	inactive	3	1
inactive	2	active-high	3	2
active-high	2	active-high	3	3

With smaller parameter differences between the single set of parameters, set 1 for example can be copied with parameter E9 (code 12) to set 2.

A changement on the binary inputs regarding the switch-over of sets of parameters is only passed on after 800 ms. This makes it possible to switch over from set 3 (both inputs active) to "no changement" (both inputs inactive) even with a slow control hardware without set 1 or set 2 being recognized.

2-98	Parameter Description	04.08.05
2-90	UD 7000 — 1.5–355.0	07_GB_T2

Programming example: Switch-over of 2 sets of parameters via 1 control input

In this example, the binary input R/J is described. However this can be applied to any binary input. The actual set of parameters **has to be** set of parameter 1.

Terminal R/J	Parameter 98	Set of parameters 1	Set of parameters 2
inactive	3	active	
active-high	102		active

Course of the parameterisation, departing from the actual set of parameters 1:

- open input R/J (separate +24 V from input R/J).
- set parameter 98 to 3 (for set of parameter 1).
- close input R/J (wire the input with +24 V).
- set parameter 98 to102 (for set of parameters 2).

Display of the active parameter set

In the "stop state", the active parameter set is shown in the standard display 1:

REM	Stop	Set: 2
Set 23.45 Hz		0%

When the parameters are displayed, the active parameter set is recognizable by the character between the parameter number and the value.

PARAMETER SET	CHARACTER
1	:
2	=
3	#

EXAMPLE:

in customer parameter set 1	in set 2	in set 3
Maximum frequency	Maximum frequency	Maximum frequency
PROG 23: 100.0 Hz	PROG 23= 100.0 Hz	PROG 23# 100.0 Hz

The active parameter set is also correspondingly recognizable in standard display 2 (example with parameter set 2 active):

VIEW D5=	88.5 %	
VIEW 9=	45.6 Hz	

Note 2 – Zero pulse search:

This function is required for the "Electronic gearbox" application if the master setpoint has been specified using an encoder channel (see parameter **2A** – **Test mode**).

04.08.05	Parameter Description	2-99
07_GB_T2	UD 7000 — 1.5–355.0	2-99

SL/FO/SLV/EC

Note 3 – Saving of parameter 33:

The respectively reached value in parameter 33 is retained both in the STOP state and also on deactivation of the line.

Note 4 – Contact type:

The inputs are operated by means of switching contacts in conjunction with a certain reference potential. Whether the contact must be open or closed in order to trip the desired function is defined individually for the inputs R/J, PS1, PS2 and PS3 (the inputs FWD and REV can be activated only by closing of the contact). The reference potential is selected jointly for the inputs FWD, REV, R/J, PS1, PS2 and PS3 by means of parameter 9F, i.e. all contacts must be connected to the same reference potential.

Note 5 – Acknowledge error state:

An error state can be acknowledged through this input (see Chapter 8.17, "Error States").

Note 6 – Activation of LOCAL mode:

ATTENTION!

If you switch over from LOCAL mode to REMOTE mode (see also parameter **9B – PS3 input function selection**), a Start command applied to the terminals is processed immediately if the motor is started. This may lead to death, injury or damage to equipment and installations.

General note:

HINT!

When several inputs are programmed to the same function, only the first of the applicable inputs is evaluated in the order R/J, PS1, PS2 and PS3. An input must be connected to the active level for at least 64 ms in order to ensure reliable activation of the selected function.

9C - Status of binary inputs (read-only)

The current level of the logical input signal is displayed. If SIO mode is not programmed (parameter **29 – Control mode**), these signals are generated from the levels of the device terminals, paying attention to the parameter **9F – High/Low active binary input selection**.

If SIO mode is programmed, the virtual terminals that are operable using the serial interface are used for this purpose (parameter **AD** – **Inverter control commands in SIO mode**).

The display is hexadecimal. Conversion to binary notation is illustrated with reference to the following example:

0063

Display _{Hex}	0			0				(6				3			
Binary _{Bin}	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1
Bit No.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function			entir		tern	erve al pi on			FWD	REV	R/J	Not used	Acknowledge error	PS3	PS2	PS1

2-100	Parameter Description	04.08.05
2-100	UD 7000 — 1.5–355.0	07_GB_T2

Each bit has the same significance as the physical terminal of the same name in SIO mode. One exception is bit 3 "Acknowledge error" since there is no corresponding terminal on the inverter. This bit allows error messages pending on the unit to be acknowledged, as with keys PROG, SHIFT resp. ENTER on the display and operator-control unit (ABE).

 \diamond Value range: 0000_H-FFFF_H

9D - Status of binary outputs (read-only)

The current level of the physical output signals is displayed. When the output ST4 is programmed to "Frequency output" (parameter 95), the corresponding bit is set to a fixed value.

The display is hexadecimal. Conversion to binary notation is illustrated with reference to the following example:

00F9

Display _{Hex}		0				0				F				9			
Binary _{Bin}	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	1	
Bit No.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Function			entir	3 are ng in iforn	tern	al p			Binary inputs High-active (parameter 9F)	Fan	Not used	KEL	ST4	ST3	ST2	11S	

◊ Value range: 0000_H−FFFF_H

9F - High/Low active binary input selection

SL / FO / SLV / EC

0	Active low	Switches must be connected to COM, internal pull-up resistor
1	Active high	Switches must be connected to +24 V, internal pull-down resistor

Change-over takes place jointly for the inputs FWD, REV, R/F, PS1–PS3. Active high is selected if the switches are connected between the inputs and +24 Volt; Active low is selected if switches are connected to COM. Pull-up and pull-down resistors produce a defined potential at the terminals when the switch is open.

In the case of inputs R/J, PS1–PS3, it is possible to additionally select whether the desired function is tripped when the switch is opened or closed.

◊ Value range: see Table

Default: 1

	Parameter Description	2-101
07_GB_T2	UD 7000 — 1.5–355.0	2-101

SL/FO/SLV/EC

8.10 Group A – Analog Outputs/SIO

A1 – Analog output MET1 selection

SL/FO/SLV/EC-OE

The following table applies to	parameter A1 and A2.
--------------------------------	----------------------

	BEDEUTUNG	BEMERKUNG
x0	Actual value 1 from standard display 2 re- ferred to parameter A6	Maximum value of parameter A6 ***)
x1	Output frequency f/f _{max}	Maximum value f _{max} (parameter 23)
x2	Output voltage V/V _n	Maximum value 100%
x3	Output current I/I _n	Maximum value 200%
x4	Output torque T/T _n	Maximum value 200%
x5	Output power P/P _n	Maximum value 200%
x6	Line voltage V _{line}	Maximum value 820 V
x7	DC link voltage V _{DC link}	Maximum value 820 V
x8	Field-generating current I _d /I _n	Maximum value 500%
x9	Torque-generating current I _q /I _n	Maximum value 500%
0x	Output 0–10 V ^{*)}	MET 1
1x	Output ±10 V	MET 1
0x	Output 0–10 V **)	MET 2
1x	Output 0–20 mA ^{**)}	MET 2
20	Inactive	0 V is output at the analog output
21	Reserved N/A	See Application description

NOTES:

- *) Negative values are output as an amount.
- **) Negative values are output as Zero.
- ***) Each read-only parameter may be transferred to the standard display 2. The required read-only parameter must be selected for this purpose. Pressing keyboard short-cut SHIFT + ENTER (press key SHIFT first, hold it then press key ENTER) transfers the parameter to the upper position of the standard display 2. This shifts the parameter which was previously in the upper position to the lower position. The settings of standard display 2 are stored automatically in power-failsafe manner. An example is given for the parameter A6.

\diamond	Value	range:	see	Table
v	value	runge.	000	i ubic

A2 – Analog output MET2 selection

See parameter A1.

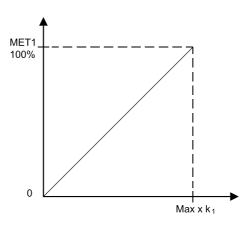
♦ Value range: see table under parameter A1

A3 – MET1 factor

Scaling of the display output 1.

This parameter defines the amount of the maximum value of the display quantity for which 10 V is output at the "analog output 1".

2 102	Parameter Description	04.08.05		
2-102	UD 7000 — 1.5–355.0	07_GB_T2		


Default: 4

Default: 1

SL/FO/SLV/EC-OE

SL / FO / SLV / EC – OE

For example, if the inverter output current is displayed and this parameter is set to 50%, 10 V is output when the rated current is reached.

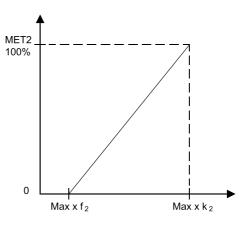
♦ Value range: 10.0–100.0%

Default: 100.0%

A4 – MET2 factor

The same description as under parameter A3 applies analogously here.

♦ Value range: 10.0–100.0%


Default: 100.0% SL / FO / SLV / EC – OE

SL/FO/SLV/EC-OE

A5 – MET2 offset

Calibration of the offset of display output 2.

The parameters define the amount of the maximum value of the display quantity for which 0 V and 10 V (or 0 mA and 20 mA) are output at the "analog output 2".

◊ Value range: 0.0–100.0%

Default: 0.0%

A6 – Reference value for the analog output

OE

Setting of the displayed maximum value of analogue outputs MET1/MET2 if parameter A1 or A2 is set to value x0 "Actual value 1 from standard display 2".

Reference value =
$$\frac{\text{required maximum value}}{\text{resolution of the parameter to display}}$$
 e.g. $1500 = \frac{150\%}{0.1\%}$

EXAMPLE:

The actual value of the rotor frequency $f_{act.}$ (parameter 09) should be output signed at analogue input MET1. The required displayed maximum value should be 50 Hz:

04.08.05	Parameter Description	2-103
07_GB_T2	UD 7000 — 1.5–355.0	2-103

Select parameter 09 (read-only parameter). First press key SHIFT, keep it pressed and then press key ENTER in order to display the actual frequency on the "standard display 2". Enter value 10 in parameter A1. Enter value "500" in parameter A6 for the required displayed maximum value of 50 Hz since $f_{act.}$ is displayed with a resolution of 0.1 Hz (see formula). You can define whether the value to be output is also to be smoothed with parameter A7 – Filtering time constant of displayed values in parameter group 0.

♦ Value range: 0–32766

Default: 500

A7 - Filtering time constant of displayed values in parameter group 0SL / FO / SLV / EC - OE

This parameter can be used to adapt the smoothing time constant of the display values in parameter group 0 (MET1/MET2 outputs). The longer a time is selected for this, the more stable will be the display of the value shown.

The parameter A7 is also important for a special function of the control outputs. See the description of parameter **8D** – **Reference value for load-dependent switching of control outputs**.

The value is represented exponentially in the form 2^{x} ms.

♦ Value range: 0–15

Default: 6 (corresponds $2^6 = 64$ ms SL / FO / SLV / EC – OE

A8 – Baud rate SIO selection

This parameter should be entered before commissioning the serial interface (SIO) to ensure communication between the inverter and control.

x0	110 baud
x1	1200 baud
x2	2400 baud
x3	4800 baud
x4	9600 baud
x5	14400 baud
x6	19200 baud
x7	38400 baud
x8	57600 baud
x9	125000 baud
1x	Same as x0, x1, x2, but only read operation allowed

NOTE: a change in this parameter value does not take effect until after the next power-on. See also description: "UD 7000 – serial interface".

♦ Value range: see Table

A9 – Slave address of the inverter for SIO operation

For control through the serial interface, one of the addresses (0–31) must be assigned to each of the maximum number of 32 inverters.

Refer also to the description: "UD 7000 – serial interface".

♦ Value range: 0–31

AA – SIO protocol

This parameter should be entered before commissioning the SIO to ensure communication between the inverter and control. The change in the parameter value does not take effect until after the next power-on.

2-104	Parameter Description	04.08.05		
2-104	UD 7000 — 1.5–355.0	07_GB_T2		

HINT!

HINT!

Default: 4

Default: 0

SL/FO/SLV/EC

SL/FO/SLV/EC

0	7E1 (7 data bits, even parity, 1 stop bit)
4	ONIA (O data hita na narity A atan hit)

1 8N1 (8 data bits, no parity, 1 stop bit)

See also description: "UD 7000 – serial interface".

♦ Value range: see Table

AB – SIO operation time-out

Monitoring function (Watchdog function) for SIO communication. Each telegram received sets the watchdog counter to zero. If the counter reaches the value programmed at this point, error message "SIO timeout" is triggered.

The value 0 has the meaning: "No time-out monitoring".

See also description: "UD 7000 - serial interface".

- ◊ Value range: 0–60 s
- AC SIO operation error messages (read-only)

SL / FO / SLV / EC

See also description: "UD 7000 - serial interface".

The display is in hexadecimal notation. Conversion to the binary notation is illustrated with reference to the following example:

Display _{Hex}		(0		0				8					0		
Binary _{Bin}	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Bit No.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function	Not used	Value range exceeded	Invalid write attempt (read only)	Unknown parameter	Invalid checksum	Reserved	Inverter is busy	Time-out	Not used							

EXAMPLE:

An 0080 (hexadecimal value) is shown on the display. Determine the binary value using a pocket calculator which can convert hexadecimal values to binary values or with a table (see conversion table on Page 2-124 of this description). A "0" or a "1" must now be inserted for each error message (bits 15–0) in the order shown in the table above (starting from the left). Digit "0" corresponds to "no error occurred" and digit "1" corresponds to "error occurred". The binary number in this example "0000 0000 1000 0000" (the "1" at the 9st position from the left (bit 7) stands for error message "Value range exceeded" (see table above). This means that this error has occurred in SIO mode.

♦ Value range: 0000_H-001F_H

04.08.05	Parameter Description	2 105
07_GB_T2	UD 7000 — 1.5–355.0	2-105

SL / FO / SLV / EC

Default: 0 s

Default: 1

0080	

Group B – Speed Controller

SL/FO/SLV/EC-SC

AD – Inverter control commands in SIO mode

This parameter provides virtual terminals with which the inverter can be controlled in SIO mode. In the SIO mode, each bit has the same function as a physical terminal.

See also description: "UD 7000 - serial interface".

The display is shown in hexadecimal notation. Conversion to binary notation is shown by way of the following example and explained analogously for parameter 97 (Page 2-93).

0012

Display _{Hex}	0		0			1				2						
Binary _{Bin}	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0
Bit No.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function	Not used	FWD	REV	DOL	Not used	Not used	PS3	PS2	PS1							

[♦] Value range: 0000_H-001F_H

Default: 0000_H

FO / SLV / EC – OE

FO / SLV / EC – OE

Default: 100

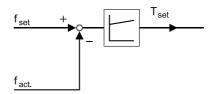
Default: 20

8.11 Group B – Speed Controller

HINT!

Group barred in the case of sensorless and V/f-controlled mode.

B1 – Speed controller gain


See description under parameter B2.

- ◊ Value range: 0–10000
- ♦ Value range \underline{SLV}^{2} : 0–10000

B2 - Reset time of speed controller

A PI controller is implemented as the speed controller. The speed controller computes the torque needed to reach the speed setpoint. The calculations are done with the frequency instead of the speed.

Parameter B1 is the P component (P gain). Increasing this parameter increases the gain. Parameter B2 is the I component (integral-action time resp. reciprocal of the I gain). Increasing it prolongs the integral-action time, i.e. the controller operates more slowly.

- f_{set} Rotation frequency setpoint.
- $f_{act.}$ Rated rotation frequency.
- T_{set} Torque setpoint.
- T_{act.} Rated motor torque.

-106	Parameter Description	04.08.05			
	UD 7000 — 1.5–355.0	07_GB_T2			

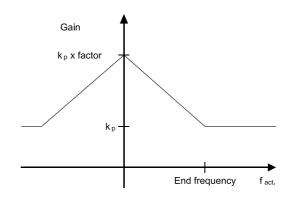
HINT!

The parameter **72** – **Ramp function selection** should be programmed to "Ramp function off" for highly dynamic applications. For <u>SLV</u>[@] applications, it is advisable to use short ramps without an S shape.

♦ Value range: 1–30000 ms

Default: 500 ms

The functions of these two parameters are explained under parameter B4 by means of a graphic.


♦ Value range: 1.0–5.0

Default: 1.1

B4 – Speed controller gain boosting end frequency FO / SLV / EC – OE

To be able to balance out disturbances more dynamically in the lower speed range, the controller gain can be boosted in this range. Below the frequency value defined by the parameter B4, the controller gain is boosted, rising in linear fashion up to speed Zero. Attention must be paid to the fact that the motor is subjected to a higher thermal load as the result of boosting of the controller gain. It is therefore advisable to observe the temperature development after boosting the gain.

The speed controller p-gain is boosted in the lower speed range from a frequency of 0 Hz up to this frequency.

NOTES: in <u>SLV</u>^{\bigcirc} applications in the field attenuation range, the parameter B4 can be programmed to the same value as the knee frequency in order to operate with lower gains in the field attenuation range.

In V/Hz-controlled operation, this parameter is not visible.

♦ Value range: 0.0–100.0 Hz

Default: 0.0 Hz

B5 – Holding control

Holding control is activated and deactivated.

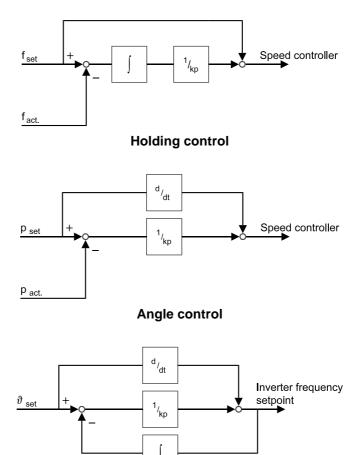
Holding control serves the purpose of drift-free holding of positions, particularly at low speeds or at Zero speed in speed-controlled mode, regardless of the applicable load torque.

0	Off
1	On

NOTE: this parameter is not visible during <u>SLV²</u> and V/Hz-controlled operation.

◊ Value range: see Table

B7 – Specific holding controller following error	FO / EC – OE
--	--------------


This parameter is active in the following modes of operation:

04.08.05	Parameter Description	2 107
07_GB_T2	UD 7000 — 1.5–355.0	2-107

FO / EC

Default: 0

- Speed control with activated holding control for the holding controller.
- Electronic gearbox for the angle controller.
- Brushless servo inverter.

Brushless servo inverter running

 k_p – Specific following error in revolutions/Hz.

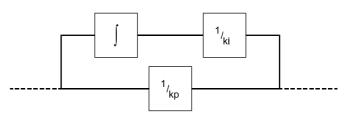
Pilot control serves to reduce the following error in the event of abrupt setpoint changes. If the holding control is to be used mainly to apply holding torques, k_p can remain at Zero. A value around 100% should be selected for an undelayed reaction to abrupt setpoint changes.

NOTE: this parameter is not visible in the <u>SLV</u>^{\circ} and the V/Hz-controlled modes.

◊ Value range: 0.001–32.000%

Default: 0.100%

FO / EC


B8 – Specific position control reset time

This parameter adds an integral component to the position control whenever required. This is generally only needed for exact adjustment of target positions.

It is specified in the form 2^x, i.e.:

$$1 \rightarrow \frac{t_N}{t_A} = 2; 2 \rightarrow \frac{t_N}{t_A} = 4; 3 \rightarrow \frac{t_N}{t_A} = 8; ..., 15 \rightarrow \frac{t_N}{t_A} = 32768$$

The parameter value Zero switches off the integral component.

ATTENTION!

A position controller with an integral component tends to oscillate. This parameter should therefore preferably be set to Zero or 15 ($2^{15} = 32768$) to either deactivate the function or to operate with a very long reset time. Other values should only be selected if urgently called for by the application.

NOTE: this parameter is not visible in the <u>SLV</u>² and in the V/Hz-controlled modes.

◊ Value range: 0–15	Default: 0
BA – Resolver pole pair number	FO / EC
Only when the resolver option is fitted.	

Pole pair number of the resolver used.

The correctness of the entry can be checked in the parameter **BB – Motor shaft angle**.

NOTE: this parameter is not visible in the <u>SLV</u>^{\odot} mode.

♦ Value range: 1–20

BB – Motor shaft angle (read-only)

Display of the motor shaft angle from $0-360^{\circ}$. The measured angle, the correctness of the entries in the parameter **BA** – **Resolver pole pair number** and parameter **BD** – **Angle sensor direction of rotation** can be checked with reference to this display. In the case of a positive direction of rotation of the motor, the angle per revolution is counted once upwards from $0-360^{\circ}$.

NOTE: this parameter is not visible in the <u>SLV</u>² and in the V/Hz-controlled modes.

BC – Angle sensor installation offset

It is imperative to determine the correct value of this parameter for EC motors if installation is not aligned.

It is sufficient to determine the offset once after installation. There are two possibilities of doing this:

- 1. Manual measurement and entry of the value in the parameter.
- 2. Determination by the inverter by setting the parameter 2A Test mode to the "Determine installation offset" function. In this case, the value is entered automatically and permanently after completion of the measurement. The parameter 2A Test mode can then be set back to "normal operation" when using an absolute value sensor (e.g. a resolver with the suitable pole pair number). When using an encoder, it is generally necessary to determine the value after every power-on.

NOTE: this parameter is not visible in the <u>SLV</u>² and in the V/Hz-controlled modes.

♦ Value range: 8000–7FFF_H

BD – Angle sensor	direction o	of rotation
--------------------------	-------------	-------------

It is imperative to determine the correct direction of rotation if installation is not aligned.

It is sufficient to determine the direction of rotation once after installation.

There are two possibilities of doing this:

1. Manual determination and entry of the value in the parameter.

04.08.05	Parameter Description	2 100
07_GB_T2	UD 7000 — 1.5–355.0	2-109

FO / EC

Default: 0000_H

FO / EC

Default: 1

FO / EC

Determination by the inverter by setting the parameter 2A – Test mode to the "Determine installation offset" function. In this case, the direction of rotation is automatically entered permanently after termination of the measurement and together with the installation offset. The parameter 2A – Test mode can then be set back to "normal operation".

0	Angle sensor rotating in the same direction as the motor
1	Angle sensor rotating in the opposite direction to the motor

The entry can be checked in the parameter BB - Motor shaft angle.

NOTE: this parameter is not visible in the <u>SLV</u>² and in the V/Hz-controlled modes.

Value range: see Table

Default: 0

BE – Number of encoder lines	FO / EC

Only when the encoder option is fitted.

Number of lines of the encoder used for speed or position feedback.

For the "Electronic gearbox" application, the number of lines of the master encoder must be programmed in the parameter **36 – Pulse number of LIM input**.

NOTE: this parameter is not visible in the <u>SLV</u>^{\odot} and in the V/Hz-controlled modes.

◊ Value range: 1–16384

Default: 1024

This parameter indicates the measured angle of the resolver evaluation electronics. It is displayed in hexadecimal notation in $0-FFFF_H$ increments within one resolver pole division.

Examples:

Resolver pole pair number: 1, display $8000_H \Rightarrow$ motor shaft angle: 180° . Resolver pole pair number: 2, display $C000_H \Rightarrow$ motor shaft angle: 135° .

NOTE: this parameter is not visible in the <u>SLV</u>² and in the V/Hz-controlled modes.

8.12 Group C – Stepper Control

The Berges inverter UD 7000 features a simple step-by-step control allowing simple function sequences to be implemented by the inverter itself as a function of programmable boundary conditions (e.g. as a function of the status of the binary inputs).

The step-by-step control is a special application and is thus not described in greater detail in this Manual.

C2 – Enable step-by-step control application

This parameter activates/deactivates step-by-step control.

0	No enable (normal mode)
1	Enable step-by-step control

♦ Value range: see Table

Default: 0

NOTE: if step-by-step control is enabled, other parameters are shown in group C. These parameters are not documented in this Manual. An application description for step-by-step control is available on request.

2 110	Parameter Description	04.08.05
2-110	UD 7000 — 1.5–355.0	07_GB_T2

SL/FO/SLV/

8.13 Group D – Options

D1 – Option number (read-only)

This parameter contains the number of the option board detected by the inverter. The option is detected automatically when the unit starts.

3	Option Resolver evaluation
7	Option 2-channel encoder evaluation with Sub-D connectors
11	Option 2-channel encoder evaluation with screw terminals
25	No option

NOTE: the options "Optical waveguide" and "I/O extension" do not appear in this parameter.

D2 – Zero pulse search frequency

This parameter defines the frequency that is used when programming the "Zero pulse search" test mode (parameter 2A) for this function.

NOTE: the parameter is displayed only if an application with rotational speed feedback is selected and an encoder option card is detected.

♦ Value range: 0.1–100.0 Hz

D3 – Zero angle

This parameter defines the angle that is assigned to the position of the front edge of an encoder's Zero pulse. Therefore, when using a position control, e.g. the "Electronic gearbox" application, the Zero point of the reference system can be defined.

NOTE: the parameter is displayed only if an application with rotational speed feedback is selected and an encoder option card is detected.

Value range: -180.0-180.0°

D4 – Total stray factor σ (read-only)

The total leakage factor σ is used by the inverter in the <u>SLV</u>^{\otimes} model. It is computed from the parameter **F7** – **Main reactance X**_h and the parameter **F5** – **Leakage reactance X** σ . If the total leakage factor s for the motor used is known and the value for the magnetising reactance X_h is adapted (see Section 6.8, "Commissioning an SLV Application"), it is possible to select the correct total leakage factor σ by correcting parameter **F5** – **Leakage reactance X** σ .

♦ Resolution: 0.01%

D5 – Actual value of the field-generating current component i_d (read-only) SL / FO / SLV / EC

In the field-orientated coordinate system, i_d is the field-generating current component. The ratio $i_d/I_{d,nom}$ thus describes the degree of magnetisation of the motor.

Resolution: 0.01%

D6 – Actual value of the torque-generating current component i_q (read-only) SL / FO / SLV / EC

In the field-orientated coordinate system, i_q is the torque-generating current component. The ratio $i_q/l_{q,nom}$ describes the load utilisation of the motor. With field attenuation, the ratio $i_q/l_{q,nom} = 100\%$ at nominal motor load.

♦ Resolution: 0.01%

Default: -

04.08.05	Parameter Description	0 1 1 1
07_GB_T2	UD 7000 — 1.5–355.0	2-111

FO / EC

Default: 0.0°

SLV

Default: 0.5 Hz

FO / EC

Default: -

Default: -

D7 – Setpoint of the torque-generating current component $i_{q,set}$ (read-only) SL / FO / SLV / EC

Percentage setpoint of the torque-generating current component (referred to the nominal working point of the machine).

♦ Resolution: 0.01%

D8–DF – (application-dependent)

Parameters D8–DF are application-dependent parameters. Only if an application (parameter 2C) uses one of these parameters do you receive a parameter name, factory default settings and inputs limits. These parameters are described only in the corresponding application descriptions.

8.14 Group E – Service Data II

E1 – Value of Ixt integral (read-only)

For frequencies above 2.5 Hz, the current flowing in the output stage is processed in a thermal model ($I \times t$ integral) to protect them from overloading.

The value of the $I \times t$ integral is shown in this parameter. If this value attains 100%, the output stage is blocked and the error message 15 "I×t-Watch" is triggered.

♦ Value range: 0–100%

E2 – Value of I×t (DC) integral (read-only)

For frequencies smaller than 2.5 Hz, the current flowing in the output stage is processed in a thermal model (I \times t (DC) integral) to protect them from overloading.

The value of the $I \times t$ (DC) integral is shown in this parameter. If this value attains 100%, the output stage is blocked and the error message 15 "I×t-Watch" is triggered.

♦ Value range: 0–100%

E3 – Frequency factor (read-only)

This parameter defines a factor in percentage by which the frequency setpoint is multiplied.

This read-only parameter is identical with parameter 33 and creates the possibility of adopting the frequency factor in the standard display 2.

E4 – Software version (read-only)

Version number of the device software. The number consists of a version number and a subnumber (e.g. 19.00). The complete version number is also contained in the start display, which is shown on the display every time the inverter is activated.

♦ Value range: 0.00–327.99

E5 – Lifetime (read-only)

Display of the unit's running time in hours.

E6 – On time (read-only)

Display of the time since the last power-on in hours.

E7 – Enabling time (read-only)

Amount of the lifetime during which the power output stage was enabled (start) in hours.

E8 – Inverter status (read-only)

Binary affiliation of the inverter status:

 Parameter Description
 04.08.05

 UD 7000 — 1.5–355.0
 07_GB_T2

SL/FO/SLV/EC

SL/FO/SLV/EC

SL / FO / SLV / EC

SL/FO/SLV/EC

SL / FO / SLV / EC

SL/FO/SLV/EC

SL/FO/SLV/EC

SL / FO / SLV / EC

SL/FU/SLV/EC

The display is in hexadecimal notation. The display is explained by way of the following example.

								10	07								
											-						
Display _{Hex}			1			())			7			
Binary _{Bin}	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	1	
Bit No.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Function	Field build-up time running	Test mode active	SIO mode	REMOTE mode	LOCAL mode	Inverter operating on the DC bus	Trap motor	Load limit	Slow-down	Start-up	Nominal direction of rotation, left (reverse)	Jog mode	DC brake	Output stage enabled	ST ⁽¹⁾	BB ⁽²⁾	

(1) ST – Start command issued (FWD or REV).

(2) BB – Inverter ready (no error)

EXAMPLE:

A 1007 (hexadecimal value) is shown on the display. Determine the binary value with the aid of a pocket calculator which can convert hexadecimal numerical values to binary values or with a table (see conversion table on Page 2-124 of this description). Now enter a "0" or a "1" for each display option (bit 15 to bit 0) in the order shown in the table above (starting from the left). Digit "0" corresponds to "function not activated" and digit "1" corresponds to "function activated". The binary number in this example "0001 0000 0000 0111" (the "1" at 4th position from the left stands for function "REMOTE mode", at 14th position stands for "Output stage enabled", at 15th position stands for "ST" and at 16th position stands for "BB" (see the table above). The means that the inverter is in REMOTE mode, the output stages are activated, a Start command has been issued and the inverter is running trouble-free.

♦ Value range: 0000_H-FFFF_H

E9 – Customer parameter set

SL/FO/SLV/EC

This parameter contains the number of the current parameter set (1, 2 or 3). Parameters are always stored in the displayed parameter set in input mode. The parameter set is changed after input of the changed number. Change-over by means of parameter input is possible in stop condition only.

This parameter also permits copying of customer parameter sets into each other (1, 2 or 3).

04.08.05	Parameter Description	2-113
07_GB_T2	UD 7000 — 1.5–355.0	2-113

1	Customer parameter set 1
2	Customer parameter set 2
3	Customer parameter set 3
12	Copy the customer parameter set $1 \Rightarrow 2$
13	Copy the customer parameter set 1 \Rightarrow 3
21	Copy the customer parameter set $2 \Rightarrow 1$
23	Copy the customer parameter set $2 \Rightarrow 3$
31	Copy the customer parameter set $3 \Rightarrow 1$
32	Copy the customer parameter set $3 \Rightarrow 2$

◊ Value range: see Table

Default: 1

EXAMPLE:

The inverter is running with the current parameter set 1. You would like to change some parameters in order to optimise the system. To do this it is necessary to select function 12 or 13. The parameters of customer parameter set 1 are then copied to parameter set 2 or 3. The required changes can now be made by selection of parameter set 2 or 3. If these changes should not improve the interaction of inverter/motor, then operation is guaranteed again by simply selecting parameter set 1.

NOTE: the parameter set can also be changed by means of binary inputs. For this purpose it is necessary to program one of the binary inputs R/J, PS1–PS3 to the corresponding function in each case (see also parameter 98–9B). The following points must be observed:

- Evaluation of the binary inputs takes place statically.
- Change-over by means of binary inputs is also possible only in stop condition.
- A parameter input (set change) does not have any effect if such a binary input is active.
- The last active parameter set is loaded automatically when the system is switched on again after line power off.

The parameter sets may contain diverse applications (parameter 2C). If, in the event of a parameter set change-over, the unit detects that the new set contains a different application, the inverter is restarted directly after the set change-over in order to adapt the inverter environment.

ATTENTION!

If the change in the parameter set also results in a change in the motor data, the application number or other important motor quantities (stator and rotor resistance or controller parameters etc.), this may lead to a situation in which the inverter loses control of the motor. This is why a safety function is integrated (parameter 8B) which deactivates the inverter output stages in any case after a stop command once a certain time has elapsed.

EA – Application-dependent defaults

SL / FO / SLV / EC

The customer parameter sets are loaded with default values. Settings for Europe and the USA are possible as default values. The settings for Europe and the USA are required to permit adaptation to the respective network conditions and usual motor series.

The parameters are reset the next time the unit is switched on. After loading of the default values, this parameter is set automatically to zero. In addition, the step control parameters C4–CB can be reset.

ATTENTION!

The UD 7000 features a wide variety of special applications offering solutions to special problems of drive engineering. Our Sales Division will be more than willing to inform you of applications available for the UD 7000. Never activate an application for which you do not have an application description. All functions described in this Manual apply only to the applications listed in this Manual.

0 111	Parameter Description	04.08.05
2-114	UD 7000 — 1.5–355.0	07_GB_T2

	PRESETTINGS FOR EUROPE (400 V/50 HZ)
0	No function
1	Customer parameter sets 1, 2 and 3 are loaded with Europe default values at the next start
3	Customer parameter set 1 is loaded with Europe default values at the next start
4	Customer parameter set 2 is loaded with Europe default values at the next start
5	Customer parameter set 3 is loaded with Europe default values at the next start
6	Step control C4–CB is cleared at the next start
50	Customer parameter set 1 is loaded with Europe presettings for application 50 (sensorless speed control \underline{SLV}^{2})
51	Customer parameter set 1 is loaded with Europe presettings for application 51 (sensorless torque control \underline{SLV}^{2})

	PRESETTINGS FOR USA (460 V/60 HZ)
0	No function
-1	Customer parameter sets 1, 2 and 3 are loaded with USA default values at the next start
-3	Customer parameter set 1 is loaded with USA default values at the next start
-4	Customer parameter set 2 is loaded with USA default values at the next start
-5	Customer parameter set 3 is loaded with USA default values at the next start
6	Step control C4–CB is cleared at the next start
-50	Customer parameter set 1 is loaded with USA presettings for application 50 (sensorless speed control \underline{SLV}^{2})
-51	Customer parameter set 1 is loaded with USA presettings for application 51 (sensorless torque control \underline{SLV}^{2})

◊ Value range: see Table

F

EB – Inverter status 2 (read-only)

Binary affiliation of the inverter status.

The display is shown in hexadecimal notation. Conversion to binary notation is shown by way of the following example and explained analogously with parameter E8.

04.08.05	Parameter Description	2-115
07_GB_T2	UD 7000 — 1.5–355.0	2-115

Default: 0

1007

Display _{Hex}			1			()			()				7	
Binary _{Bin}	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	1
Bit No.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function							Encoder Zero pulse search running	Xσ measurement running	Installation offset determination running	R1 measurement running	Braking resistor control	Load limit (briefly)	U-DC control active	Drive running	FE (1)	AO ⁽²⁾

(1) FE - Fatal error.

(2) AO – Autostart condition not met.

◊ Value range: 0000_H-FFFF_H

EC – Standard display

Display of the number of the current standard display (1 or 2).

The standard display is normally selected in the REMOTE mode with the \blacktriangle and \checkmark keys. Using this parameter, the standard display can also be switched over in the LOCAL mode. Default: 1

♦ Value range: 1–2

8.15 **Group F – Service Data III**

F1 – Rated inverter power (read-only)

Display of the inverter's rated power in kW for service purposes.

F2 – Power failure filter

If a line undervoltage occurs, fault 1 "Min. net voltage" is tripped after the time determined by this parameter has elapsed. The further behaviour of the inverter is determined by parameter 74 – Power failure response.

Value range: 0.000–20.000 s

F3 – Stator resistance R1

Stator resistance in Ω .

The stator resistance is measured by the inverter after the parameter **2A** – **Test mode** has been programmed to "Measure stator resistance". During measurement, a direct current is impressed. The previous value of the parameter remains unchanged if measurement is unsuccessful.

When this parameter is entered and modified, the following parameters are recalculated:

2-116	Parameter Description	04.08.05
2-110	UD 7000 — 1.5–355.0	07_GB_T2

SL / FO / SLV / EC

SL / FO / SLV / EC - OE

SL/FO/SLV/EC

Default: 0.040 s SL / FO / SLV / EC

 $\begin{array}{ll} \mbox{Parameter} & \mbox{F5} - \mbox{Leakage reactance } X_{\sigma} \\ \mbox{Parameter} & \mbox{F7} - \mbox{Main reactance } X_h \\ \mbox{Parameter} & \mbox{F8} - \mbox{Current controller gain} \\ \mbox{Parameter} & \mbox{F9} - \mbox{Specific current controller reset time} \end{array}$

HINT!

Only a correct value that matches the motor used guarantees good leakage behaviour of the inverter. For example, functioning of the BOOST, speed estimation or control dynamics depends on this value. The unit Ω is denoted as "R".

 \diamond Value range: 0.00–50.00 Ω

Default Europe: see Tables 8.8/8.9 Default USA: see Tables 8.10/8.11 (see also parameter EA)

F4 – Rotor resistance R2

SL/FO/SLV/EC

Rotor resistance in Ω .

The rotor resistance is measured by the inverter after the parameter **2A** – **Test mode** has been programmed to "Measure stator resistance and leakage inductance". The previous value of the parameter remains unchanged if measurement is unsuccessful.

When this parameter is entered and modified, the following parameters are recalculated:

ParameterF7 – Main reactance XhParameterF8 – Current controller gainParameterF9 – Specific current controller reset time

Only a correct value that matches the motor used guarantees good leakage behaviour of the inverter. For example, functioning of the BOOST, speed estimation or control dynamics depends on this value. The unit Ω is denoted as "R".

 \diamond Value range: 0.00–50.00 Ω

Default Europe: see Tables 8.8/8.9 Default USA: see Tables 8.10/8.11 (see also parameter EA)

SL / FO / SLV / EC

F5 – Leakage reactance Xσ

Leakage reactance at rated motor frequency (parameter 12) in $\boldsymbol{\Omega}.$

The leakage reactance is measured by the inverter when the parameter **2A** – **Test mode** is programmed to "Measure stator resistance and leakage inductance". The previous value of the parameter remains unchanged if measurement is unsuccessful.

When this parameter is entered and modified, the following parameters are recalculated:

Parameter F7 – Main reactance X_h

Parameter F8 – Current controller gain

Parameter F9 – Specific current controller reset time

HINT!

Only a correct value that matches the motor used guarantees good leakage behaviour of the inverter. For example, functioning of the BOOST, speed estimation or control dynamics depends on this value.

	EUROPE 400 V MOTOR														
P _{n inverter} [k	(W]	1.5	2.2	3.0	4.0	5.5	7.5	11.0	15.0	18.5	22.0	30.0	37.0	45.0	55.0
R1 [Ω]	Parameter F3	6.10	4.00	2.40	1.58	1.10	0.68	0.41	0.29	0.21	0.16	0.11	0.09	0.07	0.118
R2 [Ω]	Parameter F4	3.80	2.50	2.00	1.10	0.69	0.50	0.26	0.19	0.14	0.11	0.082	0.078	0.058	0.097
X _{Sigma} [Ω]	Parameter F5	4.25	3.24	2.59	2.44	1.64	1.16	0.91	0.75	0.53	0.45	0.35	0.29	0.25	0.32
Table 8.8															

04.08.05	Parameter Description	2-117
07_GB_T2	UD 7000 — 1.5–355.0	2-117

HINT!

P_{n i}

R1 R2

X_{Si}

	EUROPE 400 V MOTOR										
P _{n inverter} [k	W]	75	90	110	132 (VT)	132 (CT)	160 (CT)	200 (CT)	250 (CT)	315 (VT)	355 (VT)
R1 [Ω]	Parameter F3	0.076	0.054	0.046	0.038	0.038	0.03	0.021	0.014	0.012	0.009
R2 [Ω]	Parameter F4	0.066	0.047	0.041	0.035	0.035	0.029	0.022	0.012	0.01	0.008
X _{Sigma} [Ω]	Parameter F5	0.43	0.23	0.21	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	Table 8.9										

	USA 460 V MOTOR														
P _{n inverter} [k	:W]	1.5	2.2	3.0	4.0	5.5	7.5	11.0	15.0	18.5	22.0	30.0	37.0	45.0	55.0
R1 [Ω]	Parameter F3	3.83	2.36	1.95	1.53	0.699	0.37	0.26	0.21	0.21	0.13	0.09	0.08	0.06	0.05
R2 [Ω]	Parameter F4	2.90	1.73	1.42	1.53	0.57	0.34	0.26	0.15	0.15	0.12	0.072	0.065	0.051	0.04
X _{Sigma} [Ω]	Parameter F5	5.79	4.94	3.88	2.82	2.01	1.85	1.39	0.86	0.85	0.81	0.79	0.62	0.50	0.37
	Table 8.10														

USA 460 V MOTOR											
inverter [k	(W]	75	90	110	132 (VT)	132 (CT)	160 (CT)	200 (CT)	250 (CT)	315 (VT)	355 (VT)
[Ω]	Parameter F3	0.034	0.024	0.016	0.013	0.013	0.008	0.009	0.007	0.007	0.007
[Ω]	Parameter F4	0.021	0.01	0.009	0.007	0.007	0.03	0.007	0.005	0.005	0.005
igma [Ω]	Parameter F5	0.031	0.023	0.012	0.011	0.011	0.008	0.009	0.008	0.008	0.008
	Table 8.11										

NOTE:

The default values depend on the power of the inverter. The unit Ω is denoted as "R".

 \diamond Value range: 0.00–50.00 Ω

Default Europe: see Tables 8.8/8.9 Default USA: see Tables 8.10/8.11 (see also parameter EA)

F6 – Rotor time constant setting

This parameter serves to adjust the rotor time constant within the scope of field-oriented control of an induction motor. The value determined by the inverter on the basis of the motor's rated data corresponds to 100% (default).

If the manufacturer data or the measured motor data deviates excessively from the real motor parameters, this may lead to a situation in which the drive does not issue the full torque. In this case, it may be necessary to adapt this parameter.

NOTE: this parameter is irrelevant when using a brushless servo motor.

◊ Value range: 0.0–250.0%

Default: 100.0%

SLV

SL / FO / SLV - OE

F7 – Main reactance X_h

Main reactance X_{h} (unit: $\Omega) of the connected asynchronous motor at nominal motor frequency.$

2-118	Parameter Description	04.08.05
2-110	UD 7000 — 1.5–355.0	07_GB_T2

Default: 30.00 Ω

The <u>*SLV*</u>[@] applications use a motor model in which the main reactance X_h from the singlephase equivalent circuit of the asynchronous motor is included. The main reactance X_h is computed from the <u>*SLV*</u>[@] model from the values for the stator resistance R1 (parameter F3), the motor data (parameter group 1) and the measured results from Test mode. A change of R1, R2, X_{\u03c0} and the motor parameters (by parameter entry) results in re-computation of this parameter. If a Test mode is run, this parameter is recomputed only if a measurement of the leakage inductance is also conducted.

This parameter influences the magnetisation current consumption of the machine. Correct setting of this parameter can be checked with the drive operating by means of parameter D5. This should be virtually 100% over the entire rotational speed range.

NOTE: this parameter is only display in <u>*SLV*</u>⁽²⁾ applications. The unit Ω is denoted as "R".</sup>

 \diamond Value range: 0.00–327.67 Ω

F8 – Current controller gain	FO / SLV / EC – OE
F9 – Specific current controller reset time	FO / SLV / EC – OE

The parameter **F8 – Current controller gain** and the parameter **F9 – Specific current controller reset time** have the following meanings:

Gain
$$k_p = \frac{V_{x, Set}}{\Delta i}$$

Specific reset time
$$k_i = \frac{t_N}{t_A} \left(\text{sampling time } t_A = \frac{1}{f_{PWM}} \right)$$

One PI controller each for the d and q components is implemented as the current controller. The current controller calculates the voltage needed to reach the respective current setpoint.

$$V_{\text{Set}} = \Delta i \times k_p + \frac{I(n-1)}{k_i}$$

V_{set} – Output voltage in the d or q axis.

- $I_{(n)}$ Integral component at the time n.
- Δi System deviation in the d or q axis.
- k_p Gain (P factor).

k_i – Specific reset time.

NOTES:

Parameters F8 and F9 are dependent on a wide variety of boundary conditions: on the entered nominal motor current, the PWM frequency, the motor parameters determined during the test run or entered by hand (F3–F7) and, not least, the selected application.

Consequently, these parameters should be optimized manually only if all motor data, the PWM frequency and the parameters F3 to F7 have been entered correctly and the test run (parameter 2A) has been performed successfully.

NOTE: these parameters are not displayed in the case of V/f applications. The unit Ω is denoted as "R".

F۵	- Dead time compensation	SL/EQ/SLV/EC-OE
\diamond	Value range parameter F9: 10–30000	Default: 50
\diamond	Value range parameter F8: 0.00–250.00 Ω	Default: 1.00 Ω

This parameter switches compensation of voltage errors resulting from switching dead times on/off.

04.08.05	Parameter Description	2 1 1 0
07_GB_T2	UD 7000 — 1.5–355.0	2-119

As the voltage emitted by the inverter drops clearly when dead time compensation is off, it is advisable not to modify the default setting.

0	Off
1	Inverter, $\underline{SLV}^{\mathbb{Z}}$: On; EC/FO: Off
2	On

♦ Value range: see Table

FB – PWM frequency slaving

To improve the running characteristics of the machine at low speeds, the PWM frequency can be slaved automatically to the frequency setpoint. In this case, increased noise may occur at low speeds.

PWM frequency is not auto-adjust to the output frequency. The value in parameter 79 – PWM frequency is used as the PWM frequency.
PWM frequency is auto-adjust to the output frequency. This amounts to 1000 times the frequency setpoint, but at least 2 kHz, and no more than the value selected in parameter 79 – PWM frequency .

♦ Value range: see Table

FC – Ramp acceleration control (torque)

This parameter switches torque-dependent acceleration control of the frequency ramp on/ off. Acceleration control corresponds to dynamic torque limiting (see also parameter $5F - Gain (V_{Rm})$, acceleration control (ramp), torque.

0	Off
1	On

NOTE: this parameter is not relevant during operation with speed control and <u> SLV^{2} </u>.

◊ Value range: see Table

FD – Torque limiting

This parameter allows torque limitation to be activated or deactivated.

In V/f-controlled mode, there is not the option of direct torque limitation (reduction in current), as in FO, <u>SLV</u>⁽²⁾ or EC operating mode (application), so that the system establishes a rotational speed corresponding to the load. In application 0, the rotational speed is reduced when the torque limit is reached (parameter setting) assuming that the load torque will also drop as the rotational speed drops.

0	Off
1	On

NOTE: this parameter is not relevant during operation with speed control and <u>SLV^Q</u>.

◊ Value range: see Table

FE – Excitation (read-only)

Display of the current setpoint for the excitation of the motor in percent of its nominal excitation. The value is always 100%. It is not reduced until entry into the field-attenuation range.

2-120	Parameter Description	04.08.05
2-120	UD 7000 — 1.5–355.0	07_GB_T2

Default: 1

SL/FO/SLV/EC

Default: 0

SL

Default: 1

SL

Default: 1

SL/FO/SLV/EC

Reference value: nominal excitation of the motor.

NOTE: the "Min.excitation" warning is issued if the field setpoint is controlled down to the minimum value defined in parameter **6C – Minimum excitation**.

8.16 Group 0 – Service Data I

01	 Output frequency (read-only) 	SL / FO / SLV / EC
	Display of the inverter's output frequency = motor's stator frequency.	
\diamond		Resolution: 0.1 H
02	 Output voltage (read-only) 	SL/FO/SLV/EC
	Display of the inverter's output voltage.	
\diamond		Resolution: 1
03	– Output current (read-only)	SL/FO/SLV/EC
	Display of the inverter's output current (rms value).	
\diamond		Resolution: 0.1
04	 Output torque (read-only) 	SL / FO / SLV / EC
	Display of the inverter's output torque.	
	Reference variable: rated torque of the motor.	
\diamond		Resolution: 0.1%
05	– Output power (read-only)	SL/FO/SLV/EC
	Display of the inverter's output power.	
	Reference variable: rated power of the motor.	
\diamond		Resolution: 0.1%
06	– Line voltage (read-only)	SL/FO/SLV/EC
	Display of the line voltage (Rms value of the external line conductor t	ension).
\diamond		Resolution: 1
07	– DC link voltage (read-only)	SL / FO / SLV / EC
	Display of the DC link voltage value.	
\diamond		Resolution: 1
08	 Frequency setpoint (before the ramps) (read-only) 	SL/FO/SLV/EC
	Display of frequency setpoint at the output of the up or down ramp. corresponds to the frequency setpoint of the standard display 1.	The value displaye
\diamond		Resolution: 0.1 H
09	 Actual frequency (read-only) 	SL/FO/SLV/EC
	Display of the actual rotor rotation frequency that has been measured motor model.	or determined by the
\diamond		Resolution: 0.1 H

04.08.05	Parameter Description	2-121
07_GB_T2	UD 7000 — 1.5–355.0	2-121

 \Diamond

0A – Heat sink temperature (read-only)

Display of the inverter's heat sink temperature.

SL/FO/SLV/EC

Resolution: 1 °C

0B – Error 1 (read-only)	SL / FO / SLV / EC
0C – Error 2 (read-only)	SL / FO / SLV / EC
0D – Error 3 (read-only)	SL / FO / SLV / EC
0E – Error 4 (read-only)	SL / FO / SLV / EC
0F – Error 5 (read-only)	SL / FO / SLV / EC

Display of the error numbers pertaining to the last occurring errors (Error 1: youngest error in the Error memory; Error 5: oldest error).

Error 0 (Emergency-Stop), 1 (AC Line voltage to low), 10 (DC Bus voltage to low), 11 (Option), 12 (Autostop), 13 (SIO timeout) and 15 (I²t monitoring) are not stored in the history.

8.17 Error States

HINT!

HINT!

If the PROG, SHIFT or ENTER key is pressed, the message is reset on the ABE (display and operator-control unit). Acknowledgement of the error message does not cancel the cause of the error. Errors may be also still be pending after reset.

8.17.1 Normal Handling of Error States

In certain circumstances, the inverter may assume an error state. The occurrence of such a state can be reported through relay or transistor outputs (parameters 92–96, setting x01). The output is activated if an error occurs. When the cause of the error disappears, the error signalling output becomes inactive with deactivation of drive enabling; the drive is ready for operation.

8.17.2 Handling of Error States with the "Acknowledge Error State" Function

When a binary input R/J, PS1–PS3 is programmed with the "Acknowledge error state" function, an error state always continues to exist until the cause of the error has been remedied, drive enabling has been cancelled **and** the binary input "Acknowledge error state" is activated. Thus, in a system with several inverters, it is possible to cancel all drive enabling signals in the event of a malfunction occurring and to nevertheless locate the defective inverter through the relay or transistor output.

In the basic state, the binary input must be deactivated as otherwise the inverter cannot be started. In the event of an error, drive enabling must first be cancelled and only then the input activated. The binary input should not be cancelled until the error state is no longer indicated by the inverter.

FAULT NO.	MESSAGE	DESCRIPTION	
0	Local stop	Keypad Stop button has been pushed in the remote mode	
1	Min. net voltage	AC Line voltage to low	
2	Overtemperature	Heat sink temperature to high	
3	Overcurrent	Over current in the output stage	
4	Error PWM	PWM Fault	

2-122	Parameter Description	04.08.05
2-122	UD 7000 — 1.5–355.0	07_GB_T2

FAULT NO.	MESSAGE	DESCRIPTION
5	MOL open / i ² t	MOL contact open/I ² t monitoring of motor is triggered
6	Overvoltage DC-L	DC Bus voltage to high
7	DC-Link failure	DC Bus voltage out of limit during power up
8	Speed observer	Too many revolutions or excessive control error
9	Dyn.brake-overld	DB duty cycle above limit
10	UndervoltageDC-L	DC Bus voltage to low
11	Option	The option board is not plug in for the selected application
12	Auto-Stop	The auto stop control has been detect
13	SIO-Timeout	Series communication is disconnect
14	Position sensor	Motor feedback is disconnect
15	I×t-Watch	Output stage transistors overloaded
WARNIN	G MESSAGES:	
16	Overtemperature	Warning: Heat sink temperature to high
19	Motor synchron.	Warning: Speed synchronization in an running motor doesn't work
20	Motor to small	Warning: The nominal current of the connected motor is too small.
21	l ² t	Warning: The electronic motor protection has been exceeded
22	R1-Measuring	Warning: R1 measuring out of limit
23	Overcurrent	Warning: Overcurrent limit would been reached
26	Xs-Measuring	Warning: Xσ-Measuring is out of limit
27	Set disconn	Warning: See also parameter 2E – Minimum frequency voltage , page 2-57
28	Sensor off.	Warning: The measuring of the mounting offset is fail
29	Zero pulse	Warning: No zero pulse is found
30	CAN-Controller	No can controller found
31	Min. excitation	Warning: Minimum limit of excitation is reached
THE FOL	LOWING INTERNAL	FAULTS ARE DISPLAYED ONLY AFTER POWER UP:
32	Watchdog reset	Watchdog-Fault
33	III.trap number	Unknown trap-number
34	III.Ext.Bus Acc.	Unknown external Bus-access
35	III.Instr.Access	Unknown instruction access
36	III.Word Op.Acc.	Unknown word access
37	Protection Fault	Protection fault
38	Undefined Opcode	Undefined op-code
39	Stack Underflow	Stack-underflow
40	Stack Overflow	Stack-overflow
41	Nonmaskable Int.	Nonmaskable interrupt

04.08.05	Parameter Description	2-123
07_GB_T2	UD 7000 — 1.5–355.0	2-123

9 Annex

9.1 Abbreviations Used

The following abbreviations are used in this parameter description:

- **OE** Parameter can be edited on-line.
- **SC** Parameter can be written in the SIO control mode through the serial interface (see description "UD 7000 serial interface").
- **SL** Parameter is of significance in the version consisting of the standard inverter (Hz/V-controlled amplifier).
- **FO** Parameter is significant in the version consisting of a field-oriented controller with feedback.
- **SLV** Sensorless vector control $\underline{SLV}^{\mathbb{Q}}$.
- **EC** Parameter is significant in the version consisting of a brushless servo amplifier.
- SIO Serial RS 485 interface.

9.2 Hexadecimal to Binary Conversion

The following table shows the sixteen hexadecimal values and the corresponding binary values.

Hex	Binary			
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
А	1	0	1	0
В	1	0	1	1
С	1	1	0	0
D	1	1	0	1
Е	1	1	1	0
F	1	1	1	1

2-124	Parameter Description	04.08.05
2-124	UD 7000 — 1.5-355.0	07_GB_T2

9.3 Parameter Structure

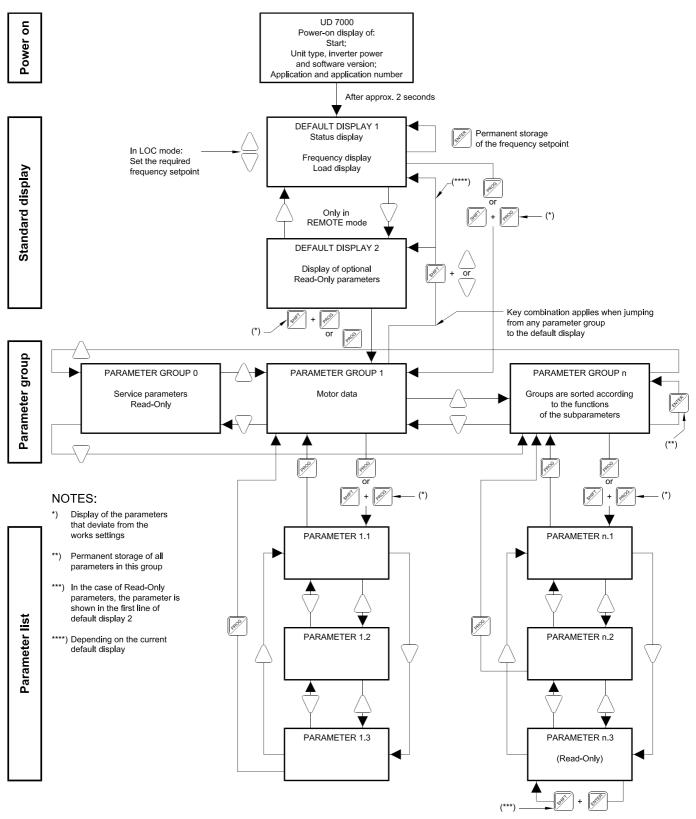


Figure 9.1

04.08.05	Parameter Description	2-125
07_GB_T2	UD 7000 — 1.5–355.0	2-120

Parameter Overview 9.4

		GROUP 1 – Motor data				
NO.	DISPLAY	DESCRIPTION	RESOLUTION	PAGE	DEFAULT	CUSTOMER
11	Nominal voltage	Rated voltage	[0.1 V]	2-40	400.0	
12	Nom. frequency	Rated frequency	[0.1 Hz]	2-40	50.0	
13	Power factor	Power factor	[0.01]	2-40		
14	Nominal speed	Rated speed	[min- ¹]	2-41		
15	Nominal power	Rated power	[0.01 kW]	2-41		
16	Nominal current	Rated current	[0.1 A]	2-41		

	GROUP 2 – Basic data							
NO.	DISPLAY	DESCRIPTION	RESOLUTION	PAGE	DEFAULT	CUSTOMER		
21	V/Hz knee	Knee frequency	[0.1 Hz]	2-43	50.0			
22	Boost	Boost	[0.1%]	2-43	100.0			
23	Max. frequency	Maximum frequency	[0.1 Hz]	2-43	50.0			
24	Min. frequency	Minimum frequency	[0.1 Hz]	2-43	0.0			
25	Acceleration #1	Acceleration time 1	[0.1 s]	2-44	3.0			
26	Deceleration #1	Deceleration time 1	[0.1 s]	2-44	3.0			
27	Acceleration #2	Acceleration time 2	[0.1 s]	2-44	5.0			
28	Deceleration #2	Deceleration time 2	[0.1 s]	2-44	5.0			
29	Control mode	Control mode	[S-P]	2-44	13			
2A	Test mode	Test mode	[S-P]	2-46	101			
2C	Application	Application	[S-P]	2-50	0			
2D	SW-Reset	Software reset	[S-P]	2-56	0			
2E	U-fmin	Minimum frequency voltage ⁽²⁾	[0.01 V]	2-57	0.00			
2F	U-fmax	Maximum frequency voltage (3)	[0.01 V]	2-57	0.00			

	GROUP 3 – Setpoint selection (display: Setpoint-select)							
NO.	DISPLAY	DESCRIPTION	RESOLUTION	PAGE	DEFAULT	CUSTOMER		
31	Reference-selec	Setpoint selection (frequency setpoint)	[S-P]	2-57	0			
32	Selection LIM	Function of the LIM input	[S-P]	2-62	1			
33	Ratio frequency	Frequency factor	[0.01%]	2-63	100.00			
34	Fact.LIM analog	Scaling factor ALIM for analogue LIM input	[0.1%]	2-63	10.0			
35	Calibr.LIM digi	Calibration digital LIM input with factor D _{LIM}	[0.1 Hz/kHz]	2-64	2.0			
36	Pulse numberLIM	Pulse number of LIM input	[1]	2-64	6			
37	Dir.master-ref.	Direction of rotation, master setpoint	[S-P]	2-66	0			
38	min Ratio freq.	Low frequency factor limit	[0.01%]	2-66	0.00			
39	max Ratio freq.	High frequency factor limit	[0.01%]	2-67	105.00			
ЗA	F-EXT1 (SIO)	External frequency setpoint 1	[0.01 Hz] ⁽¹⁾	2-67	0.00			
3B	F-EXT2 (SIO)	External frequency setpoint 2	[0.01 Hz] ⁽¹⁾	2-67	80.00			
3C	Time. VIN/CIN	Filtering time constant VIN/CIN input	[2 ^x ms]	2-67	4			
3D	Time. LIM	Filtering time constant LIM input	[2 ^x ms]	2-67	4			
3E	Pulse no. ST4	Pulse number ST4-output	[1]	2-67	10			
3F	Speed Reference	Frequency setpoint on the basis of ramp	[0.1 Hz]	2-68	r-o			

NOTES:

Various parameters are only available as a function of the current mode.

- r-o Read-only parameters are printed in italics and the reference in the tables is abbreviated to "r-o".
- [S-P] Selection parameter (for adaptation of the inverter functions).
- \diamond Value range and default values.

⁽¹⁾ In the "high frequency" application profile: unit [0.1 Hz].

 ⁽²⁾ Starting from software version A20.02 appears with parameter 4E in the display "U-fmin VIN/CIN".
 (3) Starting from software version A20.02 appears with parameter 4F in the display "U-fmax VIN/CIN".

	GROUP 4 – Frequencies						
NO.	DISPLAY	DESCRIPTION	RESOLUTION	PAGE	DEFAULT	CUSTOMER	
41	Preset speed #1	Fixed frequency 1	[0.1 Hz]	2-68	5.0		
42	Preset speed #2	Fixed frequency 2	[0.1 Hz]	2-68	20.0		
43	Preset speed #3	Fixed frequency 3	[0.1 Hz]	2-68	40.0		
44	Preset speed #4	Fixed frequency 4	[0.1 Hz]	2-68	60.0		
45	Preset speed #5	Fixed frequency 5	[0.1 Hz]	2-68	0.0		
46	Preset speed #6	Fixed frequency 6	[0.1 Hz]	2-68	0.0		
47	Skip band	Hysteresis band for blocking frequencies	[0.1 Hz]	2-70	1.0		
48	Skip freq. #1	Blocking frequency 1	[0.1 Hz]	2-70	0.0		
49	Skip freq. #2	Blocking frequency 2	[0.1 Hz]	2-70	0.0		
4A	Skip freq. #3	Blocking frequency 3	[0.1 Hz]	2-70	0.0		
4B	Skip freq. #4	Blocking frequency 4	[0.1 Hz]	2-70	0.0		

	GROUP 5 – Torque						
NO. DISPLAY DESCRIPTION RESOLUTION PAGE DEFAULT CUSTOR						CUSTOMER	
51	Select.TLim.MFo	Torque limit selection, right rotation, motor operation	[S-P]	2-70	0		
52	Select.TLim.MRe	Torque limit selection, left rotation, motor operation	[S-P]	2-70	0		
53	Select.TLim.GFo	Torque limit selection, right rotation, generator operation	[S-P]	2-70	0		
54	Select.TLim.GRe	Torque limit selection, left rotation, generator operation	[S-P]	2-70	0		
55	Torque-lim(LIM)	Torque factor LIM input	[0.1%]	2-71	100.0		
56	T-Offset-Acc.	Additional acceleration torque	[0.1%]	2-71	0.0		
57	T-Offset-Dec.	Additional deceleration torque	[0.1%]	2-71	0.0		
58	TLimit-Mot-FWD	Torque limit, right rotation, motor operation	[0.1%]	2-71	100.0		
59	TLimit-Mot-REV	Torque limit, left rotation, motor operation	[0.1%]	2-71	100.0		
5A	TLimit-Gen-FWD	Torque limit, right rotation, generator operation	[0.1%]	2-71	100.0		
5B	TLimit-Gen-REV	Torque limit, left rotation, generator operation	[0.1%]	2-71	100.0		
5C	SIO-Torq.limit	External torque limit	[0.1%]	2-72	100.0		
5E	Ref.torque(VIN)	Torque setpoint factor	[0.1%]	2-72	100.0		
5F	Gain TCtrl-ramp	Gain (V _{Rm}), acceleration control (ramp), torque	[0.1%]	2-72	200.0		

	GROUP 6 – V/Hz characteristic (display: V/f-char)							
NO.	NO. DISPLAY DESCRIPTION RESOLUTION PAGE DEFAULT CUSTOME							
61	Autoboost	Autoboost	[S-P]	2-73	1			
62	V-Hz selector	V/Hz characteristic selection	[S-P]	2-74	3			
63	Curr. DC-brake	DC brake current	[0.1 A]	2-75				
64	DC-brake time	DC brake time	[0.1 s]	2-75	1.0			
65	Freq. DC On	DC brake switch-on frequency	[0.1 Hz]	2-75	0.5			
66	Setuptime field	Field build-up time	[0.1 s]	2-76	0.5/1.0			
67	V/f-Char. V0	V/Hz characteristic, voltage V0	[0.1 V]	2-76	0.0			
68	V/f-Char. V1	V/Hz characteristic, voltage V1	[0.1 V]	2-76	100.0			
69	V/f-Char. V2	V/Hz characteristic, voltage V2	[0.1 V]	2-76	150.0			
6A	V/f-Char. V3	V/Hz characteristic, voltage V3	[0.1 V]	2-76	200.0			
6B	Max. Voltage	Cut-in point of voltage limitation control	[0.1%]	2-77	98.0			
6C	Min.excitation	Minimum excitation	[0.1%]	2-77	33.0			
6D	Setup fld.activ	Field build-up time activation	[S-P]	2-77	1			
6E	Filt.Time.FWeak	Filter field weakening	[1 ms]	2-77	100			
6F	Increments	Increment	[1]	2-78	1			

04.08.05	Parameter Description	2-127
07_GB_T2	UD 7000 — 1.5–355.0	2-127

	GROUP 7 – Inverter functions (display: Inverter funct.)							
NO.	DISPLAY	DESCRIPTION	RESOLUTION	PAGE	DEFAULT	CUSTOMER		
71	Start/Stop opt.	Start and Stop options	[S-P]	2-78	0			
72	Ramp selector	Ramp function selection	[S-P]	2-79	0			
73	Ramp. smooth	Drag time	[0.1 s]	2-80	0.1			
74	Sel. power fail	Power failure response	[S-P]	2-80	2			
75	Gain UDC-Ctrl.	DC link voltage control gain V _{DC link}	[0.1%]	2-81	500.0			
76	Slip compensat.	Slip compensation	[S-P]	2-81	0			
77	Gain slip-comp.	Slip compensation setting	[0.1%]	2-82	100.0			
78	Language/Sprach	Language	[S-P]	2-82	0			
79	PWM frequency	PWM frequency	[0.01 kHz]	2-82	2.00/4.50			
7A	Power Chopp-R	Braking resistor power	[0.01 kW]	2-83	0.08			
7B	Sped motpot.Inc	Increment motor potentiometer speed	[0.1 s]	2-83	10.0			
7C	Sped motpot.Dec	Decrement motor potentiometer speed	[0.1 s]	2-83	10.0			
7D	heating time R	Permissible heating time of braking resistor	[1 s]	2-84	2			
7E	brake resistor	Connected braking resistor	[1 Ω]	2-84	20/75			
7F	PWM mode	Control method	[S-P]	2-84	1			

	GROUP 8 – Protective functions (display: Security funct.)							
NO.	NO. DISPLAY DESCRIPTION RESOLUTION PAGE DEFAULT CUSTO							
81	Selector MOL	MOL input function selection	[S-P]	2-84	2			
82	MOL-Input	MOL input display	[1%]	2-85	r-o			
83	Restart Select.	Restart after fault definition	[Binary]	2-85	0000			
84	Number Restart	Number of restarts	[1]	2-86	0			
85	Delay Restart	Restart delay	[0.1 s]	2-86	10.0			
86	offset BC	V _{IC} offset BC to power supply	[1 V]	2-86	100			
87	Access code	Password	[1]	2-87	0			
88	Therm.timeconst	Thermal motor time constant	[1 min]	2-87	15			
89	I ² t-Limit(Warn)	I ² t warning threshold	[0.1%]	2-87	115.0			
8A	I ² t-Limit	I ² t error threshold	[0.1%]	2-87	120.0			
8B	Max.Ramp.Delay	Maximum permissible ramp extension in the event of stop	[1%]	2-87	200			
8C	T.Stop observer	Current monitoring time t _{out} for stop ramp	[0.1 s]	2-89				
8D	Refer. ST-Outp.	Reference value for load-dependent switching of control outputs	[0.1%]	2-89	0.0			
8E	Watch Speed	Selection speed control	[1]	2-89	0			

	GROUP 9 – Binary inputs/outputs (display: Binary In/Outpt)						
NO.	DISPLAY	DESCRIPTION	RESOLUTION	PAGE	DEFAULT	CUSTOMER	
91	Inputs FWD/REV	Function of inputs FWD and REV	[S-P]	2-90	1		
92	Aux. output #1	Output ST1 function selection	[S-P]	2-91	3		
93	Aux. output #2	Output ST2 function selection	[S-P]	2-91	102		
94	Aux. output #3	Output ST3 function selection	[S-P]	2-91	10		
95	Aux. output #4	Output ST4 function selection	[S-P]	2-91	115		
96	Auxiliary relay	Relay output function selection	[S-P]	2-91	101		
97	Outp.SIO-Contrl	Control of binary outputs through SIO	[Binary]	2-93	0000		
98	Input Run/Jog	Run/Jog input function selection	[S-P]	2-93	0		
99	Input PS1	PS1 input function selection	[S-P]	2-94	4		
9A	Input PS2	PS2 input function selection	[S-P]	2-95	1		
9B	Input PS3	PS3 input function selection	[S-P]	2-97	6		
9C	Status Inputs	Status of binary inputs	[Binary]	2-100	r-o		
9D	Status Outputs	Status of binary outputs	[Binary]	2-101	r-o		
9F	Inpt.H/L-active	High/Low active binary input selection	[S-P]	2-101	1		

2-128	Parameter Description	04.08.05
2-120	UD 7000 — 1.5–355.0	07_GB_T2

	GROUP A – Analog outputs/SIO (display: Analog Out/SIO)						
NO. DISPLAY DESCRIPTION RESOLUTION PAGE DEFAULT CUSTO							
A1	Meter output #1	Analog output MET1 selection	[S-P]	2-102	1		
A2	Meter output #2	Analog output MET2 selection	[S-P]	2-102	4		
A3	Factor Analog1	MET1 factor	[0.1%]	2-102	100.0		
A4	Factor Analog2	MET2 factor	[0.1%]	2-103	100.0		
A5	Offset Analog2	MET2 offset	[0.1%]	2-103	0.0		
A6	Reference MET	Reference value for the analog output	[1]	2-103	500		
A7	FilterTime Gr.0	Filtering time constant of displayed values in parameter group 0	[2 ^x ms]	2-104	6		
A8	SIO-Baudrate	Baud rate SIO selection	[S-P]	2-104	4		
A9	SIO-Address	Slave address of the inverter for SIO operation	[0–31]	2-104	0		
AA	SIO-Protocol	SIO protocol	[S-P]	2-104	1		
AB	SIO-Timeout	SIO operation time-out	[1 s]	2-105	0		
AC	SIO-Errors	SIO operation error messages	[Binary]	2-105	r-0		
AD	SIO-Commands	Inverter control commands in SIO mode	[Binary]	2-106	0000		

	GROUP B – Speed controller (display: Speed control)							
NO.	DISPLAY	DESCRIPTION	RESOLUTION	PAGE	DEFAULT	CUSTOMER		
B1	P-gain	Speed controller gain	[1]	2-106	100			
B2	I-gain	Reset time of speed controller	[1 ms]	2-106	500			
B3	Gain boost	Speed controller gain boosting factor	[0.1]	2-107	1.1			
B4	Maxfreq.gain-b.	Speed controller gain boosting end frequency	[0.1 Hz]	2-107	0.0			
B5	Holding control	Holding control	[S-P]	2-107	0			
B7	Rel.drag.dist.	Specific holding controller following error	[0.001%]	2-107	0.100			
B8	TN pos.cntrl	Specific position control reset time	[2 ^x]	2-108	0			
BA	Pole pairs Rslv	Resolver pole pair number	[1]	2-109	1			
BB	Angle (mech.)	Motor shaft angle	[0.1°]	2-109	r-o			
BC	Off.angle senso	Angle sensor installation offset	[8000–7FFF _H]	2-109	0000			
BD	Dir.angle senso	Angle sensor direction of rotation	[S-P]	2-109	0			
BE	Lines Encoder	Number of encoder lines	[1]	2-110	1024			
BF	Angle (Sensor)	Resolver measured angle	[0–FFFF _H]	2-110	r-0			

	GROUP C – Stepper control (display: Step-control)							
NO.	DISPLAY	DESCRIPTION	RESOLUTION	PAGE	DEFAULT	CUSTOMER		
C2	Step-control	Enabling	[S-P]	2-110	0			
C3	Input step	Step number for parameter input	[1]	2-110	0			
C4	Condition Input	Input condition		2-110	0			
C5	Condition Outpt	Output condition		2-110	0			
C6	Parameter-no. 1	Parameter number 1	[1]	2-110	0			
C7	Param. value 1	Parameter value 1	[1]	2-110	0			
C8	Parameter-no. 2	Parameter number 2	[1]	2-110	0			
C9	Param. value 2	Parameter value 2	[1]	2-110	0			
CA	Parameter-no. 3	Parameter number 3	[1]	2-110	0			
СВ	Param. value 3	Parameter value 3	[1]	2-110	0			
CC	Delay time	Waiting time	[0.001 s]	2-110	0			
CD	Actual step	Current step	[1]	2-110	0			
CE	Mask pin	Mask for terminal signals		2-110	0			
CF	Step-ctrl input	Input for terminal signals		2-110	0			

04.08.05	Parameter Description	2-129
07_GB_T2	UD 7000 — 1.5–355.0	2-129

	GROUP D – Options							
NO.	DISPLAY	DESCRIPTION	RESOLUTION	PAGE	DEFAULT	CUSTOMER		
D1	Option	Option number	[1]	2-111	r-0			
D2	F-zero pulse	Zero pulse search frequency	[0.1 Hz]	2-111	0.5			
D3	Zero angle	Zero angle	[0.1°]	2-111	0.0			
D4	sigma	Total stray factor σ	[0.01%]	2-111	r-o			
D5	id/ld,nom	Actual value of the field-generating current component id	[0.01%]	2-111	r-o			
D6	iq/lq,nom	Actual value of the torque-generating current component iq	[0.01%]	2-111	r-o			
D7	iq,set/lq,nom	Setpoint of the torque-generating current component i _{a,set}	[0.01%]	2-112	r-0			

	GROUP E – Service data II						
NO.	DISPLAY	DESCRIPTION	RESOLUTION	PAGE	DEFAULT	CUSTOMER	
E1	I×T-value	Value of Ixt integral	[1%]	2-112	r-o		
E2	I×T(DC)-value	Value of Ixt (DC) integral	[1%]	2-112	r-0		
E3	Ratio frequency	Frequency factor	[0.01%]	2-112	r-o		
E4	SoftwareVersion	Software version	[0.01]	2-112	r-0		
E5	Total op. time	Lifetime	[1 h]	2-112	r-0		
E6	Total run time	On time	[1 h]	2-112	r-0		
E7	Enable time	Enabling time	[1 h]	2-112	r-o		
E8	Status	Inverter status	[Binary]	2-112	r-0		
E9	Custom para.set	Customer parameter set	[S-P]	2-113	1		
EA	Reset Parameter	Application-dependent defaults	[S-P]	2-114	0		
EB	Status 2	Inverter status 2	[Binary]	2-115	r-0		
EC	Standarddisplay	Standard display	[S-P]	2-116	1		

	GROUP F – Service data III (display: Service dataIII)						
NO.	DISPLAY	DESCRIPTION	RESOLUTION	PAGE	DEFAULT	CUSTOMER	
F1	Nom.Power Inv	Rated inverter power	[0.01 kW]	2-116	r-o		
F2	Filt.power fail	Power failure filter	[0.001 s]	2-116	0.040		
F3	R1	Stator resistance R1	[0.01 Ω]	2-116			
F4	R2	Rotor resistance R2	[0.01 Ω]	2-117			
F5	Xsigma	Leakage reactance Xo	[0.01 Ω]	2-117			
F6	Tr-Adaptation	Rotor time constant setting	[0.1%]	2-118	100.0		
F7	Main reactance	Main reactance X _h	[0.01 Ω]	2-118	30.00		
F8	Gain I-control	Current controller gain	[0.01 Ω]	2-119	1.00		
F9	TN/TA I-control	Specific current controller reset time	[1]	2-119	50		
FA	Dead-time comp.	Dead time compensation	[1]	2-119	1		
FB	PWM freq.chnge.	PWM frequency slaving	[1]	2-120	0		
FC	Ramp control	Ramp acceleration control (torque)	[S-P]	2-120	1		
FD	Torq.limitation	Torque limiting	[S-P]	2-120	1		
FE	Excitation	Excitation	[0.1%]	2-120	r-o		

	GROUP 0 – Service data I						
NO.	DISPLAY	DESCRIPTION	RESOLUTION	PAGE	DEFAULT	CUSTOMER	
01	Outpt frequency	Output frequency	[0.1 Hz]	2-121	r-o		
02	Output voltage	Output voltage	[1 V]	2-121	r-o		
03	Output current	Output current	[0.1 A]	2-121	r-o		
04	Load torque	Output torque	[0.1%]	2-121	r-o		
05	Output power	Output power	[0.1%]	2-121	r-o		
06	Line voltage	Line voltage	[1 V]	2-121	r-o		
07	DC voltage	DC link voltage	[1 V]	2-121	r-o		
08	Adjust.Setpoint	Frequency setpoint (before the ramps)	[0.1 Hz]	2-121	r-o		
09	Actual freqncy.	Actual frequency	[0.1 Hz]	2-121	r-o		
0A	Inverter temp.	Heat sink temperature	[1 °C]	2-122	r-o		
0B	fault 1	Error 1		2-122	r-o		
0C	fault 2	Error 2		2-122	r-o		
0D	fault 3	Error 3		2-122	r-o		
0E	fault 4	Error 4		2-122	r-o		
0F	fault 5	Error 5		2-122	r-o		

2-130	Parameter Description	04.08.05
2-130	UD 7000 — 1.5–355.0	07_GB_T2

BERGES electronic GmbH Industriestraße 13 • D-51709 Marienheide-Rodt Postfach 1140 • D-51703 Marienheide Tel. (0 22 64) 17-17 • Fax (0 22 64) 1 71 26 http://www.bergeselectronic.com • e-mail: sales@berges.de